Bài 25 trang 54 SBT toán 9 tập 2


Giải bài 25 trang 54 sách bài tập toán 9. Đối với mỗi phương trình sau, hãy tìm các giá trị của m để phương trình có nghiệm; tính nghiệm của phương trình theo m ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đối với mỗi phương trình sau, hãy tìm các giá trị của \(m\) để phương trình có nghiệm; tính nghiệm của phương trình theo \(m\):

LG a

\(m{x^2} + \left( {2x - 1} \right)x + m + 2 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\)  (1) (có chứa tham số \(m\)).

- TH1: \(a=0\) từ đó tìm nghiệm của (1).

- TH2: \(a\ne 0\), phương trình (1) có nghiệm khi và chỉ khi \(\Delta  \ge 0\).

Lời giải chi tiết:

\(m{x^2} + \left( {2m - 1} \right)x + m + 2 = 0\)

- Nếu \(m = 0\) ta có phương trình: \( - x + 2 = 0 \Leftrightarrow x = 2\)

- Nếu \(m ≠ 0\) phương trình có nghiệm khi và chỉ khi \(\Delta  \ge 0\)

\( \Delta = {\left( {2m - 1} \right)^2} - 4m\left( {m + 2} \right) \)

     \( = 4{m^2} - 4m + 1 - 4{m^2} - 8m \)

     \( = - 12m + 1 \)
\( \Delta \ge 0 \) \( \Leftrightarrow  - 12m + 1 \ge 0 \) \(\Leftrightarrow m \le \displaystyle {1 \over {12}} \)

\( \Rightarrow \sqrt \Delta = \displaystyle \sqrt {1 - 12m} \)

Khi đó phương trình có hai nghiệm là:

\(\displaystyle {x_1}  = \dfrac{{ - b + \sqrt \Delta  }}{{2a}}= {{ - \left( {2m - 1} \right) + \sqrt {1 - 12m} } \over {2.m}} \)\(\,\displaystyle = {{1 - 2m + \sqrt {1 - 12m} } \over {2m}} \)

\(\displaystyle {x_2} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}}= {{ - \left( {2m - 1} \right) - \sqrt {1 - 12m} } \over {2.m}} \)\(\,\displaystyle = {{1 - 2m - \sqrt {1 - 12m} } \over {2m }} \)

LG b

\(2{x^2} - \left( {4m + 3} \right)x + 2{m^2} - 1 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) (\(a\ne0\)) có nghiệm khi và chỉ khi \(\Delta  \ge 0\).

Lời giải chi tiết:

\(2{x^2} - \left( {4m + 3} \right)x + 2{m^2} - 1 = 0\)  

Phương trình có nghiệm khi và chỉ khi \(\Delta  \ge 0\)

\(\eqalign{
& \Delta = {\left[ { - \left( {4m + 3} \right)} \right]^2} - 4.2\left( {2{m^2} - 1} \right) \cr 
& = 16{m^2} + 24m + 9 - 16{m^2} + 8 \cr 
& = 24m + 17 \cr 
& \Delta \ge 0  \Leftrightarrow 24m + 17 \ge 0 \cr&\Leftrightarrow m\ge - {{17} \over {24}} \cr 
& \Rightarrow \sqrt \Delta = \sqrt {24m + 17} \cr} \)

Khi đó phương trình có hai nghiệm là:

\(\displaystyle  {x_1} = \dfrac{{ - b + \sqrt \Delta  }}{{2a}}\)\(\displaystyle = {{4m + 3 + \sqrt {24m + 17} } \over 4}\)

\(\displaystyle {x_2} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}}\)\(\displaystyle = {{4m + 3 - \sqrt {24m + 17} } \over 4}\).

Loigiaihay.com


Bình chọn:
4.4 trên 18 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí