Bài 21 trang 53 SBT toán 9 tập 2


Giải bài 21 trang 53 sách bài tập toán 9. Xác định các hệ số a, b, c rồi giải phương trình...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Xác định các hệ số \(a, b, c\) rồi giải phương trình:

LG a

\(2{x^2} - 2\sqrt 2 x + 1 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta  = {b^2} - 4ac\):

+) Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}\)\(=\dfrac{-b + \sqrt{\bigtriangleup }}{2a}\)  và \({x_2}\)= \(\dfrac{-b - \sqrt{\bigtriangleup }}{2a}\)

+) Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b }{2a}\).

+) Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

\(2{x^2} - 2\sqrt 2 x + 1 = 0\) có hệ số \(a = 2, b =  - 2\sqrt 2 , c = 1\)

\(\Delta  = {b^2} - 4ac = {\left( { - 2\sqrt 2 } \right)^2} - 4.2.1 \)\(\,= 8 - 8 = 0\)

Phương trình có nghiệm kép: \(\displaystyle {x_1} = {x_2} =  - {b \over {2a}} =  - {{ - 2\sqrt 2 } \over {2.2}} = {{\sqrt 2 } \over 2}\)

LG b

\(\displaystyle 2{x^2} - \left( {1 - 2\sqrt 2 } \right)x - \sqrt 2  = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta  = {b^2} - 4ac\):

+) Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}\)= \(\dfrac{-b + \sqrt{\bigtriangleup }}{2a}\)  và \({x_2}\)= \(\dfrac{-b - \sqrt{\bigtriangleup }}{2a}\)

+) Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b }{2a}\).

+) Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

\(2{x^2} - \left( {1 - 2\sqrt 2 } \right)x - \sqrt 2  = 0\)

Hệ số \(a = 2, b =  - \left( {1 - 2\sqrt 2 } \right), c =  - \sqrt 2 \)

\( \Delta = {b^2} - 4ac \)\(\,= {\left[ { - \left( {1 - 2\sqrt 2 } \right)} \right]^2} - 4.2.\left( { - \sqrt 2 } \right) \)\(\, = 1 - 4\sqrt 2 + 8 + 8\sqrt 2 \)

\( \Delta = 1 + 4\sqrt 2 + 8 \)\(\,= 1 + 2.2\sqrt 2 + {\left( {2\sqrt 2 } \right)^2} \)\(\,= {\left( {1 + 2\sqrt 2 } \right)^2} > 0 \)

\( \Rightarrow  \sqrt \Delta = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} = 1 + 2\sqrt 2 \)

Phương trình có hai nghiệm phân biệt là:

\(\displaystyle {x_1}  = \dfrac{{ - b + \sqrt \Delta  }}{{2a}}\)\(\displaystyle  ={{1 - 2\sqrt 2 + 1 + 2\sqrt 2 } \over {2.2}} = {2 \over 4} = {1 \over 2} \)

\(\displaystyle {x_2} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}}\)\(\displaystyle  = {{1 - 2\sqrt 2 - 1 - 2\sqrt 2 } \over {2.2}} = {{ - 4\sqrt 2 } \over 4}\)\(\, = - \sqrt 2  \)

LG c

\(\displaystyle {1 \over 3}{x^2} - 2x - {2 \over 3} = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta  = {b^2} - 4ac\):

+) Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}\)= \(\dfrac{-b + \sqrt{\bigtriangleup }}{2a}\)  và \({x_2}\)= \(\dfrac{-b - \sqrt{\bigtriangleup }}{2a}\)

+) Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b }{2a}\).

+) Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

\(\displaystyle {1 \over 3}{x^2} - 2x - {2 \over 3} = 0\)

\(\Leftrightarrow {x^2} - 6x - 2 = 0\)

Hệ số \(a = 1, b = -6, c = -2\)

\( \Delta = {b^2} - 4ac = {\left( { - 6} \right)^2} - 4.1.\left( { - 2} \right) \)\(\,= 36 + 8 = 44 > 0 \)

\( \Rightarrow \sqrt \Delta = \sqrt {44} = 2\sqrt {11} \)

Phương trình có hai nghiệm phân biệt là:

\(\displaystyle {x_1} = {{6 + 2\sqrt {11} } \over {2.1}} = 3 + \sqrt {11} \)

\(\displaystyle {x_2} = {{6 - 2\sqrt {11} } \over {2.1}} = 3 - \sqrt {11} \)

LG d

\(3{x^2} + 7,9x + 3,36 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta  = {b^2} - 4ac\):

+) Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}\)= \(\dfrac{-b + \sqrt{\bigtriangleup }}{2a}\)  và \({x_2}\)= \(\dfrac{-b - \sqrt{\bigtriangleup }}{2a}\)

+) Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b }{2a}\).

+) Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

\(3{x^2} + 7,9x + 3,36 = 0\)

Hệ số \(a = 3; b = 7,9; c = 3,36\)

\( \Delta = {b^2} - 4ac = {\left( {7,9} \right)^2} - 4.3.3,36 \)\(\,= 62,41 - 40,32 = 22,09 > 0 \)

\( \Rightarrow \sqrt \Delta = \sqrt {22,09} = 4,7 \)

Phương trình có hai nghiệm phân biệt là:

\(\displaystyle {x_1} = {{ - 7,9 + 4,7} \over {2.3}} = {{ - 3,2} \over 6} = {{ - 32} \over {60}}\)\(\,\displaystyle  = - {8 \over {15}} \)

\(\displaystyle {x_2} = {{ - 7,9 - 4,7} \over {2.3}} = {{ - 12,6} \over 6} = - 2,1 \)

Loigiaihay.com


Bình chọn:
4.1 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí