Bài 24 trang 54 SBT toán 9 tập 2


Giải bài 24 trang 54 sách bài tập toán 9. Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép: a) m.x^2 - 2(m - 1)x + 2 = 0

Lựa chọn câu để xem lời giải nhanh hơn

Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép:

LG a

\(m{x^2} - 2\left( {m - 1} \right)x + 2 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có nghiệm kép 

\( \Leftrightarrow \left\{ \begin{array}{l}
a \ne 0\\
\Delta = 0
\end{array} \right.\)

Trong đó: \(\Delta  = {b^2} - 4ac\).

Lời giải chi tiết:

\(m{x^2} - 2\left( {m - 1} \right)x + 2 = 0\)

Phương trình có nghiệm kép

\( \Leftrightarrow \left\{ {\matrix{
{m \ne 0} \cr 
{\Delta = 0} \cr} } \right.\)

\( \Delta = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - 4.m.2 \)\(\, = 4\left( {{m^2} - 2m + 1} \right) - 8m \)\(\, = 4\left( {{m^2} - 4m + 1} \right) \)

\( \Delta = 0\) \( \Leftrightarrow 4\left( {{m^2} - 4m + 1} \right) = 0 \)

\( \Leftrightarrow {m^2} - 4m + 1 = 0 \)

Giải phương trình: \({m^2} - 4m + 1 = 0 \)

Có \(\Delta _m = {\left( { - 4} \right)^2} - 4.1.1 = 16 - 4 \)\(\,= 12 > 0 \)

\( \Rightarrow \sqrt {\Delta_ m} = \sqrt {12} = 2\sqrt 3 \)

\(\displaystyle {m_1} = {{4 + 2\sqrt 3 } \over {2.1}} = 2 + \sqrt 3 \) (thỏa mãn điều kiện \(m\ne0\))

\( \displaystyle {m_2} = {{4 - 2\sqrt 3 } \over {2.1}} = 2 - \sqrt 3  \) (thỏa mãn điều kiện \(m\ne0\))

Vậy \(m = 2 + \sqrt 3 \) hoặc \(m = 2 - \sqrt 3 \) thì phương trình đã cho có nghiệm kép.

LG b

\(3{x^2} + \left( {m + 1} \right)x + 4 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có nghiệm kép 

\( \Leftrightarrow \left\{ \begin{array}{l}
a \ne 0\\
\Delta = 0
\end{array} \right.\)

Trong đó: \(\Delta  = {b^2} - 4ac\).

Lời giải chi tiết:

\(3{x^2} + \left( {m + 1} \right)x + 4 = 0\)

Phương trình có nghiệm kép \( \Leftrightarrow \Delta  = 0\)

\( \Delta = {\left( {m + 1} \right)^2} - 4.3.4 \)\(\,= {m^2} + 2m + 1 - 48 \)\(\,= {m^2} + 2m - 47 \)

\( \Delta = 0 \) \( \Leftrightarrow {m^2} + 2m - 47 = 0 \)

Giải phương trình: \( {m^2} + 2m - 47 = 0 \) 

Có: \( \Delta_ m = {2^2} - 4.1\left( { - 47} \right) \)\(\,= 4 + 188 = 192 > 0 \) 

\( \Rightarrow \sqrt {\Delta_ m} = \sqrt {192} = 8\sqrt 3 \)

\( \displaystyle {m_1} = {{ - 2 + 8\sqrt 3 } \over {2.1}} = 4\sqrt 3 - 1 \)

\(\displaystyle {m_2} = {{ - 2 - 8\sqrt 3 } \over {2.1}} = - 1 - 4\sqrt 3  \)

Vậy \(m = 4\sqrt 3  - 1\) hoặc \(m =  - 1 - 4\sqrt 3 \) thì phương trình có nghiệm kép.

Loigiaihay.com


Bình chọn:
4.1 trên 8 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài