Bài 2 trang 24 SBT toán 8 tập 1


Giải bài 2 trang 24 sách bài tập toán 8. Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau:

LG a

\(\displaystyle{A \over {2x - 1}} = {{6{x^2} + 3x} \over {4{x^2} - 1}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Giải chi tiết:

\(\displaystyle{A \over {2x - 1}} = {{6{x^2} + 3x} \over {4{x^2} - 1}}\)

\( \Rightarrow A\left( {4{x^2} - 1} \right)\)\(\, = \left( {2x - 1} \right).\left( {6{x^2} + 3x} \right)\)

\( \Rightarrow A\left( {2x - 1} \right)\left( {2x + 1} \right) \)\(\,= \left( {2x - 1} \right).3x\left( {2x + 1} \right)\)

\( \Rightarrow A = 3x\)

Ta có: \(\displaystyle {{3x} \over {2x - 1}} = {{6{x^2} + 3x} \over {4{x^2} - 1}}\)

LG b

\(\displaystyle{{4{x^2} - 3x - 7} \over A} = {{4x - 7} \over {2x + 3}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Giải chi tiết:

\(\displaystyle{{4{x^2} - 3x - 7} \over A} = {{4x - 7} \over {2x + 3}}\)

 \(  \Rightarrow \left( {4{x^2} - 3x - 7} \right)\left( {2x + 3} \right) \)\(\,= A\left( {4x - 7} \right) \)

\(\Rightarrow \left( {4{x^2} + 4x - 7x - 7} \right)\left( {2x + 3} \right) \)\(\,= A\left( {4x - 7} \right) \)

\(\Rightarrow \left[ {4x\left( {x + 1} \right) - 7\left( {x + 1} \right)} \right]\left( {2x + 3} \right) \)\(\,= A\left( {4x - 7} \right) \)

\(\Rightarrow \left( {x + 1} \right)\left( {4x - 7} \right)\left( {2x + 3} \right)\)\(\, = A\left( {4x - 7} \right)  \)

\(\Rightarrow A = \left( {x + 1} \right)\left( {2x + 3} \right)\)\(\, = 2{x^2} + 3x + 2x + 3 \)\(\,= 2{x^2} + 5x + 3 \)

Ta có: \(\displaystyle {{4{x^2} - 3x - 7} \over {2{x^2} + 5x + 3}} = {{4x - 7} \over {2x + 3}}\)

LG c

\(\displaystyle{{4{x^2} - 7x + 3} \over {{x^2} - 1}} = {A \over {{x^2} + 2x + 1}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Giải chi tiết:

\(\displaystyle {{4{x^2} - 7x + 3} \over {{x^2} - 1}} = {A \over {{x^2} + 2x + 1}}\)    

\(  \Rightarrow \left( {4{x^2} - 7x + 3} \right).\left( {{x^2} + 2x + 1} \right)\)\(\, = A.\left( {{x^2} - 1} \right)  \)

\(  \Rightarrow \left( {4{x^2} - 4x - 3x + 3} \right).{\left( {x + 1} \right)^2}\)\(\, = A\left( {x + 1} \right)\left( {x - 1} \right)  \)

\(  \Rightarrow \left[ {4x\left( {x - 1} \right) - 3\left( {x - 1} \right)} \right].{\left( {x + 1} \right)^2} \)\(\,= A\left( {x + 1} \right)\left( {x - 1} \right)  \)

\(  \Rightarrow \left( {x - 1} \right)\left( {4x - 3} \right){\left( {x + 1} \right)^2}\)\(\, = A\left( {x + 1} \right)\left( {x - 1} \right)  \)

\(\Rightarrow A = \left( {4x - 3} \right)\left( {x + 1} \right) \)\(\,= 4{x^2} + 4x - 3x - 3 = 4{x^2} + x - 3 \)

Ta có: \(\displaystyle\displaystyle{{4{x^2} - 7x + 3} \over {{x^2} - 1}} = {{4{x^2} + x - 3} \over {{x^2} + 2x + 1}}\)

LG d

\(\displaystyle{{{x^2} - 2x} \over {2{x^2} - 3x - 2}} = {{{x^2} + 2x} \over A}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Giải chi tiết:

\(\displaystyle{{{x^2} - 2x} \over {2{x^2} - 3x - 2}} = {{{x^2} + 2x} \over A}\)    

\(  \Rightarrow \left( {{x^2} - 2x} \right).A \)\(\,= \left( {2{x^2} - 3x - 2} \right)\left( {{x^2} + 2x} \right)  \)

\(\Rightarrow x\left( {x - 2} \right).A \)\(\,= \left( {2{x^2} - 4x + x - 2} \right).x\left( {x + 2} \right)  \)

\(\Rightarrow x\left( {x - 2} \right).A \)\(\,= \left[ {2x\left( {x - 2} \right) + \left( {x - 2} \right)} \right].x\left( {x + 2} \right)  \)

\(  \Rightarrow x\left( {x - 2} \right).A\)\(\, = \left( {2x + 1} \right)\left( {x - 2} \right).x.\left( {x + 2} \right)  \)

\(  \Rightarrow A = \left( {2x + 1} \right)\left( {x + 2} \right)\)\(\, = 2{x^2} + 4x + x + 2 = 2{x^2} + 5x + 2 \)

Ta có : \(\displaystyle{{{x^2} - 2x} \over {2{x^2} - 3x - 2}} = {{{x^2} + 2x} \over 2{x^2} + 5x + 2}\)

Loigiaihay.com


Bình chọn:
4.6 trên 18 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí