Bài 1 trang 23 SBT toán 8 tập 1


Giải bài 1 trang 23 sách bài tập toán 8. Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau ...

Lựa chọn câu để xem lời giải nhanh hơn

Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:

LG a

\(\displaystyle {{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \({x^2}{y^3}.35xy = 35{x^3}{y^4};\)

    \(5.7{x^3}{y^4} = 35{x^3}{y^4}\)

\( \Rightarrow {x^2}{y^3}.35xy = 5.7{x^3}{y^4}\).

Vậy \(\displaystyle {{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

LG b

\(\displaystyle {{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \({x^2}\left( {x + 2} \right).\left( {x + 2} \right) = {x^2}{\left( {x + 2} \right)^2};\)

    \(x{\left( {x + 2} \right)^2}.x = {x^2}{\left( {x + 2} \right)^2}\)

\( \Rightarrow {x^2}\left( {x + 2} \right).\left( {x + 2} \right) = x{\left( {x + 2} \right)^2}.x\)

Vậy \(\displaystyle {{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

LG c

\(\displaystyle {{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \(\left( {3 - x} \right)\left( {9 - {x^2}} \right) \)\(\,= \left( {3 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right)\)\(\, = {\left( {3 - x} \right)^2}\left( {3 + x} \right)\)

\(\left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right)\)\(\, = \left( {3 + x} \right)\left( {{x^2} - 2.x.3 + {3^2}} \right) \)\(\,= \left( {3 + x} \right){\left( {x - 3} \right)^2} = \left( {3 + x} \right){\left( {3 - x} \right)^2}\)

\( \Rightarrow \left( {3 - x} \right)\left( {9 - {x^2}} \right) \)\(\,= \left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right)\).

Vậy \(\displaystyle {{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)

Chú ý: \({\left( {x - 3} \right)^2} = {\left( {3 - x} \right)^2}\) vì  \((x- 3) = - (3- x)\) nên \((x- 3)^2 = [ - (3-x)]^2 \)\(=(-1)^2.(3-x)^2= (3- x)^2 \)

LG d

\(\displaystyle {{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \(\left( {{x^3} - 4x} \right).5 = 5{x^3} - 20x;\)

    \(\left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right) \)\(\,=  - 10{x^2} - 20x + 5{x^3} + 10{x^2}\)\(\, = 5{x^3} - 20x\)

\( \Rightarrow \left( {{x^3} - 4x} \right).5 \)\(\,= \left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right)\)

Vậy \(\displaystyle {{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 11 phiếu

Các bài liên quan: - Bài 1. Phân thức đại số

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài