Bài 1 trang 23 SBT toán 8 tập 1


Giải bài 1 trang 23 sách bài tập toán 8. Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau ...

Lựa chọn câu để xem lời giải nhanh hơn

Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:

LG a

\(\displaystyle {{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \({x^2}{y^3}.35xy = 35{x^3}{y^4};\)

    \(5.7{x^3}{y^4} = 35{x^3}{y^4}\)

\( \Rightarrow {x^2}{y^3}.35xy = 5.7{x^3}{y^4}\).

Vậy \(\displaystyle {{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

LG b

\(\displaystyle {{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \({x^2}\left( {x + 2} \right).\left( {x + 2} \right) = {x^2}{\left( {x + 2} \right)^2};\)

    \(x{\left( {x + 2} \right)^2}.x = {x^2}{\left( {x + 2} \right)^2}\)

\( \Rightarrow {x^2}\left( {x + 2} \right).\left( {x + 2} \right) = x{\left( {x + 2} \right)^2}.x\)

Vậy \(\displaystyle {{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

LG c

\(\displaystyle {{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \(\left( {3 - x} \right)\left( {9 - {x^2}} \right) \)\(\,= \left( {3 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right)\)\(\, = {\left( {3 - x} \right)^2}\left( {3 + x} \right)\)

\(\left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right)\)\(\, = \left( {3 + x} \right)\left( {{x^2} - 2.x.3 + {3^2}} \right) \)\(\,= \left( {3 + x} \right){\left( {x - 3} \right)^2} = \left( {3 + x} \right){\left( {3 - x} \right)^2}\)

\( \Rightarrow \left( {3 - x} \right)\left( {9 - {x^2}} \right) \)\(\,= \left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right)\).

Vậy \(\displaystyle {{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)

Chú ý: \({\left( {x - 3} \right)^2} = {\left( {3 - x} \right)^2}\) vì  \((x- 3) = - (3- x)\) nên \((x- 3)^2 = [ - (3-x)]^2 \)\(=(-1)^2.(3-x)^2= (3- x)^2 \)

LG d

\(\displaystyle {{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

Ta có: \(\left( {{x^3} - 4x} \right).5 = 5{x^3} - 20x;\)

    \(\left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right) \)\(\,=  - 10{x^2} - 20x + 5{x^3} + 10{x^2}\)\(\, = 5{x^3} - 20x\)

\( \Rightarrow \left( {{x^3} - 4x} \right).5 \)\(\,= \left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right)\)

Vậy \(\displaystyle {{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)

Loigiaihay.com


Bình chọn:
4.5 trên 25 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.