Bài tập 6 trang 130 Tài liệu dạy – học Toán 7 tập 2


Giải bài tập Cho đa thức

Đề bài

Cho đa thức

\(A = 5{x^3} - {x^4} - 2{x^3} + 4{x^2} + 1 + 3{x^4} - 3{x^3}\)

a) Hãy thu gọn và sắp xếp các hạng tử của A(x) theo lũy thừa giảm dần của biến.

b) Chứng minh đa thức A(x) không có nghiệm.

Lời giải chi tiết

a)

\(\eqalign{  & A(x) = 5{x^3} - {x^4} - 2{x^3} + 4{x^2} + 1 + 3{x^4} - 3{x^3}  \cr  &  = (5{x^3} - 2{x^3} - 3{x^3}) + ( - {x^4} + 3{x^4}) + 4{x^2} + 1 = 2{x^4} + 4{x^2} + 1 \cr}\)

Sắp xếp các hạng tử của A(x) theo lũy thừa giảm dần của biến

\(A(x) = 2{x^4} + 4{x^2} + 1\)

b) Vì \(A(x) = 2{x^4} + 4{x^2} + 1 \ge 1 > 0\) với mọi x (vì x2 ≥ 0; x4 ≥ 0) nên đa thức A(x) không có nghiệm.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - A. Phần đại số

>>Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.