Bài 85 trang 137 Sách bài tập Hình học lớp 12 Nâng cao>
Trong không gian tọa độ Oxyz cho đường thẳng d1
Trong không gian tọa độ Oxyz cho đường thẳng d1 đi qua điểm M1(-23;-10;0), có vecto chỉ phương \(\overrightarrow {{u_1}} \) (8 ; 4; 1) và đường thẳng d2 đi qua điểm M2(3; -2; 0), có vecto chỉ phương \(\overrightarrow {{u_2}} (2; -2; 1)\).
LG a
Viết phương trình các mặt phẳng (P1), (P2) lần lượt đi qua d1, d2 và song song với nhau
Lời giải chi tiết:
Đường thẳng d1 có vectơ chỉ phương là \(\overrightarrow {{u_1}} = (8 ; 4 ; 1)\).
Đường thẳng d2 có vectơ chỉ phương là \(\overrightarrow {{u_2}} = (2 ; -2 ; 1)\).
Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {6{\rm{ }};{\rm{ }} - 6{\rm{ }};{\rm{ }} - 24} \right)\) nên \(\overrightarrow n \) = (1 ; -1 ; -4) là một vectơ pháp tuyến của (P1) và (P2).
Mặt phẳng (P1) đi qua M1 (-23 ; -10 ; 0) nên có phương trình:
\(\left( {x + 23} \right) - \left( {y + 10} \right) - 4z = 0\) hay \(x - y - 4z + 13 = 0.\)
Mặt phẳng (P2) đi qua M2(3 ; -2 ; 0) nên có phương trình:
\(\left( {x - 3} \right) - \left( {y + 2} \right) - 4z = 0\) hay \(x - y - 4z - 5 = 0.\)
LG b
Tính khoảng cách giữa d1 và d2.
Lời giải chi tiết:
Khoảng cách h giữa d1 và d2 bằng khoảng cách từ điểm M bất kì thuộc (P1) tới (P2). Lấy M = (0 ; 1 ; 3), ta có \(h = {{\left| { - 1 - 12 - 5} \right|} \over {\sqrt {{1^2} + {1^2} + {4^2}} }} = {{18} \over {\sqrt {18} }} = 3\sqrt {2.} \)
LG c
Viết phương trình đường thẳng \(\Delta \) song song với Oz và cắt cả d1, d2.
Lời giải chi tiết:
Gọi (\(\alpha \)) là mặt phẳng đi qua d1 và song song với Oz,
(\(\alpha \)) có phương trình : \(x{\rm{ }} - {\rm{ }}2y + {\rm{ }}3{\rm{ }} = {\rm{ }}0\) (vì \(\overrightarrow {{n_\alpha }} = \left[ {\overrightarrow {{u_1}} ,\overrightarrow k } \right]\)).
Tương tự, mặt phẳng (\(\beta \)) đi qua d2 và song song với Oz có phương trình :
\(x + y - {\rm{ }}1{\rm{ }} = {\rm{ }}0\) (vì \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow {{u_2}} ,\overrightarrow k } \right]\)).
Dễ thấy giao tuyến của hai mặt phẳng (\(\alpha \)) và (\(\beta \)) chính là đường thẳng \(\Delta \) cần tìm.
\(\Delta \) có phương trình là: \(\left\{ \matrix{ \hfill \cr x = {{ - 1} \over 3} \hfill \cr y = {4 \over 3} \hfill \cr z = t. \hfill \cr} \right.\)
Loigiaihay.com
- Bài 86 trang 137 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 87 trang 137 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 88 trang 138 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 84 trang 137 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 83 trang 136 Sách bài tập Hình học lớp 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao