Bài 68 trang 133 Sách bài tập Hình học lớp 12 Nâng cao>
Cho đường thẳng d đi qua điểm M(0;0;1),
Đề bài
Cho đường thẳng d đi qua điểm M(0;0;1), có vec tơ chỉ phương \(\overrightarrow u (1;1;3)\) và mặt phẳng \(\left( \alpha \right)\) có phương trình 2x+y-z+5=0. Chứng minh d song song với \(\left( \alpha \right)\). Tính khoảng cách giữa d và \(\left( \alpha \right)\).
Lời giải chi tiết
Vectơ chỉ phương của đường thẳng d là \(\overrightarrow u \) = (1; 1; 3), vec tơ pháp tuyến của mp(\(\alpha \)) là \(\overrightarrow n \) = (2; 1; -1).
Vì \(\overrightarrow n \).\(\overrightarrow u \) = 0 nên \(\overrightarrow n \bot \overrightarrow u \). Dễ thấy \(M \notin (\alpha ).\)
Do đó \(d\) // (\(\alpha \)).
Khoảng cách từ M tới (\(\alpha \)) bằng khoảng cách giữa d và \((\alpha )\) nên
\(d(d,(\alpha )) = {{\left| { - 1 + 5} \right|} \over {\sqrt {{2^2} + {1^2} + {1^2}} }} = {4 \over {\sqrt 6 }} = {{2\sqrt 6 } \over 3}.\)
Loigiaihay.com
- Bài 69 trang 133 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 70 trang 133 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 71 trang 134 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 72 trang 134 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 73 trang 134 Sách bài tập Hình học lớp 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao