Bài 77 trang 135 Sách bài tập Hình học lớp 12 Nâng cao


Viết phương trình đường vuông góc chung của các cặp đường thẳng sau :

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình đường vuông góc chung của các cặp đường thẳng sau :

LG a

\(\eqalign{  & \;\;d:{{x - 2} \over 2} = {{y - 3} \over 3} = {{z + 4} \over { - 5}},\cr&\;\;\;\;\;d':{{x + 1} \over 3} = {{y - 4} \over { - 2}} = {{z - 4} \over { - 1}}\cr} \)

Lời giải chi tiết:

Cách 1: Ta có \(\overrightarrow {{u_d}}  = \left( {2;3; - 5} \right),\overrightarrow {{u_{d'}}}  = \left( {3; - 2; - 1} \right).\)

Khi đó vì \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = \left( { - 13; - 13; - 13} \right)\) nên đường vuông góc chung \(\Delta \) có một vectơ chỉ phương là \(\overrightarrow u  = \left( {1;1;1} \right).\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa và \(\Delta \) thì \(\left( \alpha  \right)\) đi qua \({M_o}(2;3; - 4)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow u } \right] = \left( {8, - 7, - 1} \right).\)

Có phương trình của mp\(\left( \alpha  \right)\) là: \(8\left( {x - 2} \right) - 7\left( {y - 3} \right) - 1\left( {z + 4} \right) = 0\)

\( \Leftrightarrow 8x - 7y - z + 1 = 0.\)

Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(d'\) và \(\Delta \) thì \(\left( \beta  \right)\)  đi qua điểm \(M_o'\left( { - 1;4;4} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow u ,\overrightarrow {{u_{d'}}} } \right] = \left( {1;4; - 5} \right).\)

Phương trình của mp\(\left( \beta  \right)\) là :\(1\left( {x + 1} \right) + 4\left( {y - 4} \right) - 5\left( {z - 4} \right) = 0\)

\( \Leftrightarrow x + 4y - 5z + 5 = 0.\)

Vậy đường vuông góc chung \(\Delta \) của \(d\) và \(d'\) là giao tuyến của hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) . Nó có phương trình tham số là:

                               \(\left\{ \matrix{  x = t \hfill \cr  y = t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

Cách 2: Điểm \(M \in d\) có toa độ là \(M = \left( {2 + 2t;3 + 3t; - 4 - 5t} \right).\)

Điểm \(N \in d'\) có toa độ là \(N = \left( { - 1 + 3t';4 - 2t';4 - t'} \right)\)

\( \Rightarrow \overrightarrow {MN}  = \left( { - 3 + 3t' - 2t;1 - 2t' - 3t;8 - t' + 5t} \right).\)

MN là đường vuông góc chung của \(d\) và \(d'\) khi và chỉ khi

 \(\left\{ \matrix{  \overrightarrow {MN} .\overrightarrow {{u_d}}  = 0 \hfill \cr  \overrightarrow {MN} .\overrightarrow {{u_{d'}}}  = 0 \hfill \cr}  \right.\)

Suy ra \(M = \left( {0;0;1} \right),N = \left( {2;2;3} \right) \Rightarrow \overrightarrow {MN}  = \left( {2;2;2} \right).\)

Vậy phương trình chính tắc của đường vuông góc chung \(\Delta \) là

\({x \over 1} = {y \over 1} = {{z - 1} \over 1}.\)

LG b

\(\eqalign{  & \;\;d:\left\{ \matrix{  x = 2 + t \hfill \cr  y = 1 - t \hfill \cr  z = 2t \hfill \cr}  \right.,d':\left\{ \matrix{  x = 2 - 2t'. \hfill \cr  y = 3 \hfill \cr  z = t'. \hfill \cr}  \right. \cr} \)

Lời giải chi tiết:

\({{x - 2} \over 1} = {{y - 3} \over 5} = {z \over 2}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí