Bài 72 trang 134 Sách bài tập Hình học lớp 12 Nâng cao


a)Tìm tọa độ hình chiếu

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm tọa độ hình chiếu ( vuông góc ) của điểm \({M_0}(1; - 1;2)\) trên mặt phẳng

\(\left( \alpha  \right):2x - y + 2z + 12 = 0.\)

Giải chi tiết:

Phương trình của đường thẳng đi qua điểm M0(1 ; -1 ; 2) và vuông góc với mặt phẳng (\(\alpha \)) là :

             \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - t \hfill \cr  z = 2 + 2t. \hfill \cr}  \right.\)

Gọi M'0(x ; y ; z) là hình chiếu của M0 trên mp(\(\alpha \)). Toạ độ của M'0 thoả mãn hệ :

    \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - 2t \hfill \cr  z = 2 + 2t \hfill \cr  2x - y + 2z + 12 = 0 \hfill \cr}  \right. \Rightarrow t =  - {{19} \over 9}.\) 

Vậy  \(M{'_0} = \left( { - {{29} \over 9};{{10} \over 9}; - {{20} \over 9}} \right).\)

LG b

Cho bốn điểm A(4;1;4), B(3;3;1), C(1;5;5), D(1;1;1). Tìm tọa độ hình chiếu của D trêm mặt phẳng (ABC).

Giải chi tiết:

\(\overrightarrow {AB} \) = (-1 ; 2 ; -3), \(\overrightarrow {AC} \) = (-3 ; 4 ; 1)

\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)= (14 ; 10 ; 2).

Lấy một vectơ pháp tuyến của mp(ABC) là \(\overrightarrow n \)= (7 ; 5 ; 1), ta có phương trình của mặt phẳng (ABC):

            7x + 5y + z - 37 = 0. 

Đường thẳng đi qua D và vuông góc với mp(ABC) có phương trình :

              \(\left\{ \matrix{  x = 1 + 7t \hfill \cr  y = 1 + 5t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

Toạ độ hình chiếu D’ của D trên mp(ABC) thoả mãn hệ

              \(\left\{ \matrix{  x = 1 + 7t \hfill \cr  y = 1 + 5t \hfill \cr  z = 1 + t \hfill \cr  7x + 5y + z - 37 = 0. \hfill \cr}  \right.\)

Suy ra D’ = \(\left( {{{81} \over {25}};{{13} \over 5};{{13} \over {25}}} \right).\)

LG c

Cho ba điểm A(1;1;2), B(-2;1;-1), C(2;-2;-1). Tìm tọa độ hình chiếu của gốc O trên mặt mp(ABC).

Giải chi tiết:

Tương tự ta có hình chiếu của O trên (ABC) là:

\(\left( {{3 \over {34}};{2 \over {17}}; - {3 \over {34}}} \right).\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài