Bài 81 trang 136 Sách bài tập Hình học lớp 12 Nâng cao


Cho đường thẳng d1 đi qua điểm M1(0;0;1),

Đề bài

Cho đường thẳng d1 đi qua điểm M1(0;0;1), có vec tơ chỉ phương \(\overrightarrow {{u_1}} (0;1;0)\) và đường thẳng d2 đi qua điểm M2(0;0;-1), có vec tơ chỉ phương \(\overrightarrow {{u_2}} (1;0;0).\) Tìm tập hợp các điểm M nằm trong mỗi mặt phẳng tọa độ và cách đều d1, d2.

Lời giải chi tiết

Với điểm \(M\left( {x;y;z} \right)\) bất kì, ta tính được các khoảng cách từ \(M\) tới \({d_1}\) và \({d_2}\)  là:     

\({h_1} = \sqrt {{{\left( {z - 1} \right)}^2} + {x^2}} ,\)     \({h_2} = \sqrt {{{\left( {z + 1} \right)}^2} + {y^2}} .\)

M cách đều \({d_1}\) và \({d_2}\) khi và chỉ khi

\({h_1} = {h_2}\) \(\Leftrightarrow \sqrt {{{\left( {z - 1} \right)}^2} + {x^2}}  = \sqrt {{{\left( {z + 1}\right)}^2} + {y^2}} \) 

\(\eqalign{  &  \Leftrightarrow {x^2} - 2z = {y^2} + 2z  \cr  &  \Leftrightarrow {x^2} - {y^2} = 4z. \cr} \)

Xét trường hợp sau:

+) \(M \in \) mp\(\left( {Oxy} \right)\) khi đó \(z = 0\) suy ra \({x^2} - {y^2} = 0.\)

Vậy quỹ tích điểm M là cặp đường thẳng \(y =  \pm x\) nằm trong mặt phẳng \(z = 0\).

+) M \( \in \) mp(Oyz), tức là x = 0. Quỹ tích điểm M là đường parabol y2 = -4z nằm trong mặt phẳng x = 0.

+) M  \( \in \) mp(Oxz), tức là y = 0. Quỹ tích điểm M là đường parabol x2 = 4z nằm trong mặt phẳng y = 0.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí