Bài 8 trang 19 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho biểu thức

Đề bài

Cho biểu thức \(A = \sqrt {x + 2} .\sqrt {x - 3} \) và \(B = \sqrt {\left( {x + 2} \right)\left( {x - 3} \right)} \).

a) Tìm x để A và B có nghĩa.

b) Với giá trị nào của x thì A = B ?

Phương pháp giải - Xem chi tiết

+) Biểu thức: \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0.\)

+) Giải phương trình \(A = B\)  để tìm \(x,\) sau đó đối chiếu với điều kiện để kết luận giá trị của \(x.\)

Lời giải chi tiết

a) Biểu thức \(A = \sqrt {x + 2} .\sqrt {x - 3} \) có nghĩa \( \Leftrightarrow \left\{ \begin{array}{l}x + 2 \ge 0\\x - 3 \ge 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x \ge  - 2\\x \ge 3\end{array} \right.\)

\(\Leftrightarrow x \ge 3.\)

Biểu thức \(B = \sqrt {\left( {x + 2} \right)\left( {x - 3} \right)} \) có nghĩa \( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 2 \ge 0\\x - 3 \ge 0\end{array} \right.\\\left\{ \begin{array}{l}x + 2 \le 0\\x - 3 \le 0\end{array} \right.\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \ge  - 2\\x \ge 3\end{array} \right.\\\left\{ \begin{array}{l}x \le  - 2\\x \le 3\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le  - 2\end{array} \right..\)

b) Ta có:

\(\begin{array}{l}A = B \\\Leftrightarrow \sqrt {x + 2} .\sqrt {x - 3}  = \sqrt {\left( {x + 2} \right)\left( {x - 3} \right)} \\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 3} \right) = \left( {x + 2} \right)\left( {x + 3} \right)\end{array}\)

\( \Rightarrow A = B\) với mọi \(x\) thỏa mãn \(A,\;\;B\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\\left[ \begin{array}{l}x \ge 3\\x \le  - 2\end{array} \right.\end{array} \right. \Leftrightarrow x \ge 3.\)

Vậy với \(x \ge 3\) thì \(A = B.\)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng