Giải bài tập Tài liệu Dạy - học Toán lớp 9, Phát triển tư duy đột phá trong dạy học Toán 9
3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Hoạt động 6 trang 126 Tài liệu dạy – học Toán 9 tập 1 >
Giải bài tập Cho đường tròn (O ; 10 cm) và hai dây AB = 8 cm, CD = 6 cm. Từ O hạ OH và OK theo thứ tự
Đề bài

Cho đường tròn (O ; 10 cm) và hai dây AB = 8 cm, CD = 6 cm. Từ O hạ OH và OK theo thứ tự vuông góc với AB và CD.
Hãy tính OH, OK và cho biết đoạn nào dài hơn.
Lời giải chi tiết

Ta có \(OH \bot AB,\,\,OK \bot CD \Rightarrow \) H, K theo thứ tự là trung điểm của \(AB,\,\,CD\).
\( \Rightarrow HB = \dfrac{1}{2}AB = \dfrac{1}{2}.8 = 4\,\,\left( {cm} \right),\)\(\,\,KD = \dfrac{1}{2}CD = \dfrac{1}{2}.6 = 3\,\,\left( {cm} \right)\)
Áp dụng định lí Pytago trong tam giác vuông \(OHB\) có:
\(O{H^2} = O{B^2} - H{B^2} = {10^2} - {4^2} = 84 \)
\(\Leftrightarrow OH = \sqrt {84} = 2\sqrt {21} \,\,\left( {cm} \right)\)
Áp dụng định lí Pytago trong tam giác vuông \(OKD\) có:
\(O{K^2} = O{D^2} - K{D^2} = {10^2} - {3^2} = 91\)
\(\Leftrightarrow OK = \sqrt {91} \,\,\left( {cm} \right)\)
Do \(91 > 84 \Rightarrow \sqrt {91} > \sqrt {84} \Rightarrow OK > OH\).
Vậy \(OK > OH\).
Loigiaihay.com




