Hoạt động 6 trang 126 Tài liệu dạy – học Toán 9 tập 1


Giải bài tập Cho đường tròn (O ; 10 cm) và hai dây AB = 8 cm, CD = 6 cm. Từ O hạ OH và OK theo thứ tự

Đề bài

Cho đường tròn (O ; 10 cm) và hai dây AB = 8 cm, CD = 6 cm. Từ O hạ OH và OK theo thứ tự vuông góc với AB và CD.

Hãy tính OH, OK và cho biết đoạn nào dài hơn.

Lời giải chi tiết

 

Ta có \(OH \bot AB,\,\,OK \bot CD \Rightarrow \) H, K theo thứ tự là trung điểm của \(AB,\,\,CD\).

\( \Rightarrow HB = \dfrac{1}{2}AB = \dfrac{1}{2}.8 = 4\,\,\left( {cm} \right),\)\(\,\,KD = \dfrac{1}{2}CD = \dfrac{1}{2}.6 = 3\,\,\left( {cm} \right)\)

Áp dụng định lí Pytago trong tam giác vuông \(OHB\) có:

\(O{H^2} = O{B^2} - H{B^2} = {10^2} - {4^2} = 84 \)

\(\Leftrightarrow OH = \sqrt {84}  = 2\sqrt {21} \,\,\left( {cm} \right)\)

Áp dụng định lí Pytago trong tam giác vuông \(OKD\) có:

\(O{K^2} = O{D^2} - K{D^2} = {10^2} - {3^2} = 91\)

\(\Leftrightarrow OK = \sqrt {91} \,\,\left( {cm} \right)\)

Do \(91 > 84 \Rightarrow \sqrt {91}  > \sqrt {84}  \Rightarrow OK > OH\).

Vậy \(OK > OH\). 

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí