Bài 90 trang 54 SBT toán 7 tập 2


Đề bài

Đường trung trực \(d\) của đoạn thẳng \(AB\) chia mặt phẳng thành hai phần (không kể đường thẳng \(d):\) phần chứa điểm \(A\) ký hiệu là \({P_A}\), phần chứa điểm \(B\) ký hiệu là \({P_B}\) (h.21)

a) Gọi \(M\) là một điểm của \({P_A}\). Chứng minh rằng \(MA < MB.\)

b) Gọi \(N\) là một điểm của \({P_B}\). Chứng minh rằng \(NB < NA.\) 

c) Gọi \(K\) là một điểm sao cho \(KA < KB.\) Hỏi rằng \(K\) nằm ở đâu trong \({P_A}\),\({P_B}\) hay trên \(d?\)

Phương pháp giải - Xem chi tiết

Sử dụng:

+) Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

+) Trong một tam giác, tổng hai cạnh luôn lớn hơn cạnh còn lại. 

Lời giải chi tiết

a) Nối \(MA, MB.\) Gọi \(C\) là giao điểm của MB với đường thẳng \(d,\) nối \(CA.\) 

Ta có:  \(MB = MC + CB\)

Mà \(CA = CB\) (tính chất đường trung trực)

Suy ra: \( MB = MC + CA\) (1)

Trong \(∆ MAC\) ta có:

\(MA < MC + CA\) (bất đẳng thức tam giác)  (2)

Từ (1) và (2) suy ra:  \(MA < MB\)

b) Nối \(NA, NB.\) Gọi \(D\) là giao điểm của \(NA\) với đường thẳng \(d,\) nối \(DB.\)

Ta có: \(NA = ND  + DB\)

Mà: \(DA = DB\) (tính chất đường trung trực)

Suy ra:  \(NA =  ND + DB \)   (3)

Trong \(∆NDB\) ta có:

\(NB < ND  + DB\) (bất đẳng thức tam giác)  (4)

Từ (3) và (4) suy ra:  \(NA > NB\) 

c) Nếu \(K\) nằm trong \({P_B}\) thì theo câu \(b\) ta có \(KB < KA,\) trái với đề bài.

Nếu \(K\) nằm trên \(d\) thì \(KA = KB\)  (tính chất đường trung trực), trái với đề bài.

Nếu \(K\) nằm trong \({P_A}\) thì theo câu \(a\) ta có \(KA < KB,\) thỏa mãn đề bài.

Vậy \(K\) nằm trong \({P_A}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 91 trang 54 SBT toán 7 tập 2

    Giải bài 91 trang 54 sách bài tập toán 7. Cho tam giác ABC, các đường phân giác của góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC...

  • Bài 3.1, 3.2, 3.3, 3.4 phần bài tập bổ sung trang 54 SBT toán 7 tập 2

    Giải bài 3.1, 3.2, 3.3, 3.4 phần bài tập bổ sung trang 54 sách bài tập toán 7. Chứng minh rằng trong một tam giác, đường cao không lớn hơn đường trung tuyến xuất phát từ một đỉnh...

  • Bài 3.5, 3.6, 3.7, 3.8 phần bài tập bổ sung trang 54, 55 SBT toán 7 tập 2

    Giải bài 3.5, 3.6, 3.7, 3.8 phần bài tập bổ sung trang 54, 55 sách bài tập toán 7.Cho tam giác ABC cân tại C. Kẻ các đường cao AA_1 và BB_1 của tam giác đó. Hai đường cao này cắt nhau tại M. Chứng minh rằng đường thẳng MC là đường trung trực của đoạn thẳng AB.

  • Bài 89 trang 53 SBT toán 7 tập 2

    Giải bài 89 trang 53 sách bài tập toán 7. Cho hình 20 trong đó giao điểm O của hai đường thẳng a và b nằm ngoài phạm vi tờ giấy. Chỉ vẽ hình trong phạm vi tờ giấy, ...

  • Bài 88 trang 53 SBT toán 7 tập 2

    Giải bài 88 trang 53 sách bài tập toán 7.Cho góc xOy khác góc bẹt. Dùng một chiếc thước thẳng có chia khoảng, hãy nêu cách vẽ tia phân giác của góc xOy.

  • Bài 87 trang 53 SBT toán 7 tập 2

    Giải bài 87 trang 53 sách bài tập toán 7. Cho góc xOy khác góc bẹt, điểm A thuộc cạnh Ox, điểm B thuộc cạnh Oy. a) Hãy tìm điểm M nằm trong góc xOy, cách đều Ox, Oy và cách đều A, B...

  • Bài 86 trang 53 SBT toán 7 tập 2

    Giải bài 86 trang 53 sách bài tập toán 7.Cho hình 19 trong đó G là trọng tâm của tam giác ABC. Chứng minh rằng:...

  • Bài 85 trang 53 SBT toán 7 tập 2

    Giải bài 85 trang 53 sách bài tập toán 7. Cho bốn điểm A, B, C, D như hình dưới. Hãy tìm một điểm M sao cho tổng MA + MB + MC + MD là nhỏ nhất.

  • Bài 84 trang 52 SBT toán 7 tập 2

    Giải bài 84 trang 52 sách bài tập toán 7. Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 4cm, 5cm.

  • Bài 83 trang 52 SBT toán 7 tập 2

    Giải bài 83 trang 52 sách bài tập toán 7. Cho tam giác ABC có AB < AC, đường cao AH. Chứng minh rằng: HB < HC,...

  • Bài 82 trang 52 SBT toán 7 tập 2

    Giải bài 82 trang 52 sách bài tập toán 7. Cho Tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA. a) Hãy so sánh các góc AMB và ANC. b) Hãy so sánh các độ dài AM và AN.

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài