Bài 3.5, 3.6, 3.7, 3.8 phần bài tập bổ sung trang 54, 55 SBT toán 7 tập 2


Giải bài 3.5, 3.6, 3.7, 3.8 phần bài tập bổ sung trang 54, 55 sách bài tập toán 7.Cho tam giác ABC cân tại C. Kẻ các đường cao AA_1 và BB_1 của tam giác đó. Hai đường cao này cắt nhau tại M. Chứng minh rằng đường thẳng MC là đường trung trực của đoạn thẳng AB.

Lựa chọn câu để xem lời giải nhanh hơn

Bài III.5

Cho tam giác \(ABC\) cân tại \(C.\) Kẻ các đường cao \({\rm{A}}{{\rm{A}}_1}\) và \(B{B_1}\) của tam giác đó. Hai đường cao này cắt nhau tại \(M.\) Chứng minh rằng đường thẳng \(MC\) là đường trung trực của đoạn thẳng \(AB.\)

Phương pháp giải:

Sử dụng:

+) Ba đường cao của tam giác động quy tại một điểm. Điểm đó là trực tâm tam giác.

+) Trong tam giác cân, đường cao xuất phát từ đỉnh cũng là đường trung trực của tam giác. 

Lời giải chi tiết:

Xét tam giác \(ABC\) có hai đường cao \(AA_1\) và \(BB_1\) cắt nhau tại \(M\) nên \(M\) là trực tâm tam giác \(ABC.\) Do đó, \(CM\) là đường cao của tam giác \(ABC\) (vì trong một tam giác ba đường cao đồng quy)

Lại có tam giác \(ABC\) cân tại \(C\) nên đường cao \(CM\) cũng là đường trung trực của tam giác.

Vậy \(MC\) là đường trung trực của đoạn thẳng \(AB.\)

Bài III.6

Cho tam giác \(ABC\) có \(Â = 130°.\) Gọi \(C’, B’\) là các điểm sao cho \(AB\) là đường trung trực của \(CC’\) và \(AC\) là đường trung trực của \(BB’.\) Hai đường thẳng \(CB’\) và \(BC’\) cắt nhau tại \(A’.\) Hãy tìm bên trong tam giác \(A’BC\) điểm cách đều ba cạnh của tam giác đó.

Phương pháp giải:

Sử dụng:

+) Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó.

+) Trong tam giác cân, đường trung trực ứng với cạnh đáy cũng là đường phân giác của tam giác.

+) Trong một tam giác, ba đường phân giác giao nhau tại một điểm. Điểm đó cách đều ba cạnh của tam giác.

Lời giải chi tiết:

Xét tam giác \(A’BC\)

+) Vì \(AC\) là đường trung trực của \(BB’\) nên \(CB=CB'\) (tính chất đường trung trực)

Suy ra tam giác \(CBB'\) cân tại \(C\) có \(AC\) là đường trung trực nên \(AC\) cũng là đường phân giác của góc \(BCB'\)

+) Vì \(AB\) là đường trung trực của \(CC’\) nên \(BC=BC'\) (tính chất đường trung trực)

Suy ra tam giác \(BCC'\) cân tại \(B\) có \(AB\) là đường trung trực nên \(AB\) cũng là đường phân giác của góc \(CBC'\)

Suy ra \(AB, AC\) lần lượt là đường phân giác của các góc \(A’BC\) và góc \(A’CB.\) Vậy ba đường phân giác của tam giác \(A’BC\) đồng quy tại \(A,\) hay \(A\) là điểm nằm trong tam giác \(A’BC\) và cách đều ba cạnh của tam giác này.

Bài III.7

Dựng các hình vuông \(ABDE\) và \(ACFG\) bên ngoài tam giác nhọn \(ABC\) cho trước.

a) Gọi \(H\) là điểm thuộc đường thẳng \(BC\) sao cho \({\rm{A}}H \bot BC\). Gọi \(I, J \) là các điểm thuộc đường thẳng \(AH\) sao cho \(EI \bot AH\) và \(GJ \bot AH\). Chứng minh

\(∆ABH = ∆EAI, ∆ACH = ∆GAJ\)

Từ đó suy ra đường thẳng \(AH\) cắt \(EG\) tại trung điểm \(K\) của \(EG\) (tức là \(AK\) là trung tuyến của tam giác \(AEG)\)

b) Gọi \(L\) là điểm thuộc đường thẳng \(AK\) sao cho \(K\) là trung điểm của \(AL.\) Chứng minh \(AL = BC.\)

c) Chứng  minh \(∆ABL = ∆BDC.\) Từ đó suy ra \(CD\) là một đường cao của tam giác \(BCL.\)

d) Chứng minh rằng các đường thẳng \(AH, BF, CD\) đồng quy.

Phương pháp giải:

Sử dụng:

+) Các trường hợp bằng nhau của tam giác vuông

+) Ba đường cao của một tam giác đồng quy tại 1 điểm.

Lời giải chi tiết:

a) +) Xét tam giác EIA vuông tại I nên : \(\widehat {IEA} + \widehat {IAE} = {90^0}\) (tính chất tam giác vuông)

Lại có: \(\widehat {IAE} + \widehat {EAB} + \widehat {BAH} = {180^0}\) (1)

\( \Rightarrow \widehat {IAE} + \widehat {BAH} = {180^0} - \widehat {EAB} \)\(= {180^0} - {90^0} = {90^0}\)  (2)

Từ (1) và (2) suy ra \(\widehat {BAH} = \widehat {A{\rm{E}}I}\) (cùng phụ với góc \(EAI)\)

Hai tam giác vuông \(ABH\) và \(EAI\) có \(AB = EA,\) \(\widehat {BAH} = \widehat {A{\rm{E}}I}\) (chứng minh trên) nên \(∆ABH = ∆EAI\,\) (cạnh huyền-góc nhọn)

Suy ra \(AH=EI\) (hai cạnh tương ứng)

Tương tự hai tam giác vuông \(ACH\) và \(GAJ\) bằng nhau.

Suy ra \(AH=GJ\) (hai cạnh tương ứng)

Suy ra \(EI = AH = GJ.\)

Mặt khác, \(\widehat {JKG} = \widehat {IKE}\) (đối đỉnh), do đó  \(∆EKI = ∆GKJ\) (cgv-gn)

Từ đó ta có \(EK = GK,\) hay \(K\) là trung điểm của \(EG.\) Vậy \(AK\) là trung tuyến của tam giác \(AEG.\)

b) Theo a) \(∆EKI = ∆GKJ\) nên \(KI = KJ.\) Mặt khác, theo giả thiết \(K\) là trung điểm của \(AL\) nên \(AK = LK. \) Suy ra, \(KA – KI = KL – KJ\) hay \(IA= JL.\)

Ta có: \(∆ACH= ∆ GAJ\) ( theo a) nên \(HC = AJ\)

Lại có \(∆ABH = ∆ EAI\) (theo a) nên \(BH = AI.\)

Ta có:

\(AL = AJ + JL = AJ + AI \)\(= HC + HB  = BC\)

c) Hai tam giác \(ALB\) và \(BCD\) có

\(AL = BC\) (theo câu b)

\( AB = BD\)  ( vì ABDE là hình vuông)

\(\widehat {BAL} = 90^\circ  + \widehat {E{\rm{A}}L} \)\(= 90^\circ  + \widehat {ABC} = \widehat {DBC}\)

Nên \(∆ABL = ∆BCD\,(c-g-c)\)

Suy ra \(\widehat {ALB} = \widehat {BC{\rm{D}}}\).

Mặt khác ta có \(\widehat {ALB} + \widehat {LBH} = 90^\circ \) nên \(\widehat {BC{\rm{D}}} + \widehat {LBH} = 90^\circ \).

Suy ra \(LB \bot C{\rm{D}}\), tức \(CD\) là một đường cao của tam giác \(LBC.\)

d) Lập luận tương tự câu c), ta có \(BF\) là một đường cao của tam giác \(LBC.\)

Theo câu c) thì \(CD\) là một đường cao của tam giác \(LBC.\)

Vậy ba đường thẳng \(AH, BF, CD\) là ba đường cao của tam giác \(LBC\) nên chúng đồng quy.

Bài III.8

Cho tam giác \(ABC.\)

a) Qua trung điểm \(D\) của cạnh \(BC,\) kẻ đường thẳng song song với \(AB,\) nó cắt cạnh \(AC\) tại \(E.\) Qua \(E\) kẻ đường thẳng song song với \(BC,\) nó cắt \(AB\) tại \(F.\) Chứng minh \(∆CDE = ∆EFA.\) Từ đó suy ra \(E \) là trung điểm của cạnh \(AC.\) 

b) Chứng minh rằng đường thẳng đi qua các trung điểm hai cạnh của một tam giác thì song song với cạnh thứ ba của tam giác đó.

c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác \(ABC\) là trực tâm của tam giác có ba đỉnh là trung điểm ba cạnh của tam giác \(ABC.\)

Phương pháp giải:

Sử dụng:

+) Các trường hợp bằng nhau của tam giác

+) Tính chất hai đường thẳng song song

+) Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó

Lời giải chi tiết:

a) Xét \(∆BDF\) và \(∆EFD\) có:

+) \(\widehat {EDF} = \widehat {DFB}\) (so le trong, \(DE//AB)\)

+) \(DF\) cạnh chung

+) \(\widehat {EFD} = \widehat {FDB}\) (so le trong, \(EF//BC)\)

Ta có \(∆BDF = ∆EFD (g.c.g)\)

Suy ra \(BD = EF.\) Theo giả thiết, \(D\) là trung điểm của \(BC\) nên \(CD = DB = EF.\)

Hai tam giác \(CDE \) và \(EFA\) có:

+) \(\widehat {C{\rm{D}}E} = \widehat {CBA} = \widehat {{\rm{EFA}}}\) (các góc đồng vị)

+) \(CD = EF\)

+) \(\widehat {EC{\rm{D}}} = \widehat {{\rm{AEF}}}\) (các góc đồng vị)

Suy ra \(∆CDE = ∆EFA (g.c.g)\)

Do đó, \(CE = EA.\)

b) Ta có \(D\) là trung điểm của \(BC,\) \(E \) là trung điểm của \(AC.\) Theo câu a) đường thẳng qua \(D,\) song song với \(AB\) phải cắt \(AC\) tại trung điểm của \(AC\) nên đường thẳng đó phải đi qua \(E,\) hay \(DE // AB.\)

c) Gọi \(D, E, F\) theo thứ tự là trung điểm của \(BC, CA, AB.\) Đường trung trực của \(BC\) phải vuông góc với \(EF\) (vì (\(EF // BC),\) hay nó là một đường cao của tam giác \(DEF.\) Suy ra ba đường trung trực của tam giác \(ABC\) là ba đường cao của tam giác \(DEF.\) Do đó tâm đường tròn ngoại tiếp tam giác \(ABC\) (giao điểm của ba đường trung trực của tam giác \(ABC)\) là trực tâm của tam giác \(DEF.\)

Loigiaihay.com


Bình chọn:
4.1 trên 9 phiếu
  • Bài 3.1, 3.2, 3.3, 3.4 phần bài tập bổ sung trang 54 SBT toán 7 tập 2

    Giải bài 3.1, 3.2, 3.3, 3.4 phần bài tập bổ sung trang 54 sách bài tập toán 7. Chứng minh rằng trong một tam giác, đường cao không lớn hơn đường trung tuyến xuất phát từ một đỉnh...

  • Bài 91 trang 54 SBT toán 7 tập 2

    Giải bài 91 trang 54 sách bài tập toán 7. Cho tam giác ABC, các đường phân giác của góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC...

  • Bài 90 trang 54 SBT toán 7 tập 2

    Giải bài 90 trang 54 sách bài tập toán 7. Chứng minh rằng MA < MB.

  • Bài 89 trang 53 SBT toán 7 tập 2

    Giải bài 89 trang 53 sách bài tập toán 7. Cho hình 20 trong đó giao điểm O của hai đường thẳng a và b nằm ngoài phạm vi tờ giấy. Chỉ vẽ hình trong phạm vi tờ giấy, ...

  • Bài 88 trang 53 SBT toán 7 tập 2

    Giải bài 88 trang 53 sách bài tập toán 7.Cho góc xOy khác góc bẹt. Dùng một chiếc thước thẳng có chia khoảng, hãy nêu cách vẽ tia phân giác của góc xOy.

  • Bài 87 trang 53 SBT toán 7 tập 2

    Giải bài 87 trang 53 sách bài tập toán 7. Cho góc xOy khác góc bẹt, điểm A thuộc cạnh Ox, điểm B thuộc cạnh Oy. a) Hãy tìm điểm M nằm trong góc xOy, cách đều Ox, Oy và cách đều A, B...

  • Bài 86 trang 53 SBT toán 7 tập 2

    Giải bài 86 trang 53 sách bài tập toán 7.Cho hình 19 trong đó G là trọng tâm của tam giác ABC. Chứng minh rằng:...

  • Bài 85 trang 53 SBT toán 7 tập 2

    Giải bài 85 trang 53 sách bài tập toán 7. Cho bốn điểm A, B, C, D như hình dưới. Hãy tìm một điểm M sao cho tổng MA + MB + MC + MD là nhỏ nhất.

  • Bài 84 trang 52 SBT toán 7 tập 2

    Giải bài 84 trang 52 sách bài tập toán 7. Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 4cm, 5cm.

  • Bài 83 trang 52 SBT toán 7 tập 2

    Giải bài 83 trang 52 sách bài tập toán 7. Cho tam giác ABC có AB < AC, đường cao AH. Chứng minh rằng: HB < HC,...

  • Bài 82 trang 52 SBT toán 7 tập 2

    Giải bài 82 trang 52 sách bài tập toán 7. Cho Tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA. a) Hãy so sánh các góc AMB và ANC. b) Hãy so sánh các độ dài AM và AN.

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.