Bài 81 trang 22 SBT toán 7 tập 1


Đề bài

Tìm các số \(a, b, c\) biết rằng:

\(\displaystyle {a \over 2} = {b \over 3};{b \over 5} = {c \over 4}\) và \(a - b + c = -49\)

Phương pháp giải - Xem chi tiết

Tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a - c + e}}{{b - d + f}}\)

Lời giải chi tiết

Ta có:

\(\displaystyle {a \over 2} = {b \over 3} \Rightarrow {a \over {10}} = {b \over {15}}\)

\(\displaystyle {b \over 5} = {c \over 4} \Rightarrow {b \over {15}} = {c \over {12}}\)           

Suy ra: \(\displaystyle {a \over {10}} = {b \over {15}} = {c \over {12}}\) và \(a - b + c =  -49\).

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\displaystyle {a \over {10}} = {b \over {15}} = {c \over {12}} = {{a - b + c} \over {10 - 15 + 12}}\)\(\,\displaystyle = {{ - 49} \over 7} =  - 7\)

Ta có:  

\(\displaystyle {a \over {10}} =  - 7 \Rightarrow a = 10.( - 7) =  - 70\)

\(\displaystyle {b \over {15}} =  - 7 \Rightarrow b = 15.( - 7) =  - 105\) 

\(\displaystyle{c \over {12}} =  - 7 \Rightarrow c = 12.( - 7) =  - 84\)

Vậy \(a = -70; b = -105; c = -84.\)

Loigiaihay.com


Bình chọn:
4.7 trên 44 phiếu

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.