Bài 72 trang 169 SBT toán 9 tập 1>
Giải bài 72 trang 169 sách bài tập toán 9. Cho hai đường tròn đồng tâm O. Gọi AB là dây bất kỳ của đường tròn nhỏ. Đường thẳng AB cắt đường tròn lớn ở C và D ( nằm giữa B và C). So sánh các độ dài AC và BD.
Đề bài
Cho hai đường tròn đồng tâm \(O.\) Gọi \(AB\) là dây bất kỳ của đường tròn nhỏ. Đường thẳng \(AB\) cắt đường tròn lớn ở \(C\) và \(D\) \((A\) nằm giữa \(B\) và \(C).\) So sánh các độ dài \(AC\) và \(BD.\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức: Trong một đường tròn:
+) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Lời giải chi tiết
Kẻ \(OI ⊥ AB.\) Ta có: \(OI ⊥ CD\)
Trong đường tròn \((O)\) (nhỏ) ta có: \(OI ⊥ AB\)
Suy ra: \(IA = IB\) \((1)\) ( đường kính vuông góc dây cung thì đi qua trung điểm của dây ấy)
Trong đường tròn \((O)\) (lớn) ta có: \(OI ⊥ CD\)
Suy ra: \(IC = ID\) ( đường kính vuông góc dây cung thì đi qua trung điểm của dây ấy)
Hay \(IA + AC = IB + BD \) \( (2)\)
Từ \((1)\) và \((2)\) suy ra: \(AC = BD.\)
Loigiaihay.com
- Bài 73 trang 169 SBT toán 9 tập 1
- Bài 74 trang 169 SBT toán 9 tập 1
- Bài 75 trang 169 SBT toán 9 tập 1
- Bài 76 trang 169 SBT toán 9 tập 1
- Bài 77* trang 169 SBT toán 9 tập 1
>> Xem thêm