Bài 7.1 phần bài tập bổ sung trang 94 SBT toán 8 tập 2


Đề bài

Hình bs.5 cho biết tam giác \(ABC\) có hai đường cao \(AD\) và \(BE \) cắt nhau tại \(H.\)

Trong hình bs.5 có số cặp tam giác đồng dạng với nhau là:

A. 1 cặp                   B. 2 cặp

C. 3 cặp                   D. 4 cặp 

Hãy chọn kết quả đúng.


Phương pháp giải - Xem chi tiết

Sử dụng: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

Lời giải chi tiết

Xét \(\Delta BEC\) và \(\Delta ADC\) có:

\(\widehat C\) chung

\(\widehat {BEC} = \widehat {ADC}=90^o\)

\( \Rightarrow \Delta BEC \backsim \Delta ADC\) (g.g).

\( \Rightarrow \widehat {{A_1}} = \widehat {{B_1}}\) (hai góc tương ứng).

Xét \(\Delta AHE\) và \(\Delta BHD\) có:

\(\widehat {{A_1}} = \widehat {{B_1}}\) (chứng minh trên)

\(\widehat {AEH} = \widehat {BDH}=90^o\)

\(\Rightarrow \Delta AHE \backsim \Delta BHD\) (g.g).

Xét \(\Delta AHE \) và \( \Delta BCE\) có:

\(\widehat {{A_1}} = \widehat {{B_1}}\) (chứng minh trên)

\(\widehat {AEH} = \widehat {BEC} = {90^o}\)

\( \Rightarrow \Delta AHE \backsim \Delta BCE\) (g.g).

Xét \(\Delta ACD\) và \(\Delta BHD\) có:

\(\widehat {{A_1}} = \widehat {{B_1}}\) (chứng minh trên)

\(\widehat {ADC} = \widehat {BDH} = {90^o}\)

\( \Rightarrow \Delta ACD  \backsim\Delta BHD\) (g.g).

Vậy có \(4\) cặp tam giác đồng dạng.

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài