Bài 67 trang 60 SBT toán 8 tập 2


Giải bài 67 trang 60 sách bài tập toán 8. Giải các phương trình: a) |5x| - 3x - 2 = 0 ; b) x - 5x + |-2x| - 3 = 0 ; ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(\left| {5x} \right| - 3x - 2 = 0;\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

+) Trường hợp 1 :

\(\left| {5x} \right| = 5x\) khi \(5x > 0 \) hay \(x \ge 0;\)

Khi đó, phương trình đã cho trở thành: \(5x - 3x - 2 = 0 \Leftrightarrow 2x = 2 \) \(\Leftrightarrow x = 1\)

Giá trị \(x = 1\) thỏa mãn điều kiện \(x ≥ 0\) nên \(1\) là nghiệm của phương trình.

+) Trường hợp 2 :

\(\left| {5x} \right| =  - 5x\) khi \(5x < 0 \) hay \( x < 0.\)

Khi đó, phương trình đã cho trở thành: \( - 5x - 3x - 2 = 0 \Leftrightarrow  - 8x = 2 \) \(\Leftrightarrow x =  - 0,25\)

Giá trị \(x = -0,25\) thỏa mãn điều kiện \(x < 0\) nên \(– 0,25\) là nghiệm của phương trình.

 Vậy tập nghiệm của phương trình là: \(S = \{1; - 0,25\}.\)

LG b

\(x - 5x + \left| { - 2x} \right| - 3 = 0;\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

+) Trường hợp 1 :

\(\left| { - 2x} \right| =  - 2x\) khi \( - 2x \ge 0 \) hay \(x \le 0;\)

Khi đó, phương trình đã cho trở thành: 

\(x - 5x - 2x - 3 = 0 \Leftrightarrow  - 6x = 3 \) \(\Leftrightarrow x =  - 0,5\)

Giá trị \(x = -0,5\) thỏa mãn điều kiện \(x ≤ 0\) nên \(-0,5\) là nghiệm của phương trình.

+) Trường hợp 2 :

\(\left| { - 2x} \right| = 2x\) khi \( - 2x < 0 \) hay \(x > 0.\)

Khi đó, phương trình đã cho trở thành: \(x - 5x + 2x - 3 = 0 \Leftrightarrow  - 2x = 3 \) \(\Leftrightarrow x =  - 1,5\)

Giá trị \(x = -1,5\) không thỏa mãn điều kiện \(x > 0\) nên loại.

 Vậy tập nghiệm của phương trình là:  \(S = \{-0,5\}.\)

LG c

\(\left| {3 - x} \right| + {x^2} - \left( {4 + x} \right)x = 0;\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

+) Trường hợp 1 :

\(\left| {3 - x} \right| = 3 - x\) khi \(3 - x \ge 0 \) hay \( x \le 3;\)

Khi đó, phương trình đã cho trở thành: \(3 - x + {x^2} - \left( {4 + x} \right)x = 0\)

\(\Leftrightarrow 3 - x + {x^2} - 4x - {x^2} = 0\)

\( \Leftrightarrow 3 - 5x = 0\Leftrightarrow 3 =5x \Leftrightarrow x = 0,6\)

Giá trị \(x = 0,6\) thỏa mãn điều kiện \(x ≤ 3\) nên \(0,6\) là nghiệm của phương trình.

+) Trường hợp 2 :

\(\left| {3 - x} \right| = x - 3\) khi \(3 - x < 0 \) hay \( x > 3.\)

Khi đó, phương trình đã cho trở thành: \(x - 3 + {x^2} - \left( {4 + x} \right)x = 0 \)

\(\Leftrightarrow x - 3 + {x^2} - 4x - {x^2} = 0\)

\( \Leftrightarrow  - 3x - 3 = 0 \Leftrightarrow -3x = 3\Leftrightarrow x = -1\)

Giá trị \(x = - 1\) không thỏa mãn điều kiện \(x > 3\) nên loại.

 Vậy tập nghiệm của phương trình là: \(S = \{0,6\}.\)

LG d

\({\left( {x - 1} \right)^2} + \left| {x + 21} \right| - {x^2} - 13 = 0.\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

+) Trường hợp 1 :

\(\left| {x + 21} \right| = x + 21\) khi \(x + 21 \ge 0 \) hay \( x \ge  - 21;\)

Khi đó, phương trình đã cho trở thành: \({\left( {x - 1} \right)^2} + x + 21 - {x^2} - 13 = 0x\)

\(\Leftrightarrow {x^2} - 2x + 1 + x + 21 - {x^2} - 13 \) \(= 0  \)

\( \Leftrightarrow  - x + 9 = 0 \Leftrightarrow x = 9  \)

Giá trị \(x = 9\) thỏa mãn điều kiện \(x ≥ -21\) nên \(9\) là nghiệm của phương trình.

+) Trường hợp 2 :

\(\left| {x + 21 } \right|=-x-21\) khi \(x + 21 < 0 \) hay \( x <  - 21.\) 

Khi đó, phương trình đã cho trở thành: 

\({\left( {x - 1} \right)^2} - x - 21 - {x^2} - 13 \) \(= 0  \)

\(  \Leftrightarrow {x^2} - 2x + 1 - x - 21 - {x^2} - 13 \) \(= 0  \)

\(  \Leftrightarrow  - 3x - 33 = 0  \)

\(  \Leftrightarrow  - 3x =33   \)

\(\Leftrightarrow x =  - 11 \)

Giá trị \(x =  - 11\) không thỏa mãn điều kiện \(x < -21\) nên loại.

 Vậy tập nghiệm của phương trình là: \(S = \{9\}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài