Bài 56 trang 14 SBT toán 9 tập 1


Giải bài 56 trang 14 sách bài tập toán 9. Đưa thừa số ra ngoài dấu căn...7x..

Lựa chọn câu để xem lời giải nhanh hơn

Đưa thừa số ra ngoài dấu căn; 

LG câu a

\(\sqrt {7{x^2}} \) với \(x > 0\);

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\(\sqrt {7{x^2}}  = \left| x \right|\sqrt 7  = x\sqrt 7 \) (với \(x > 0\))

LG câu b

\(\sqrt {8{y^2}} \) với \(y < 0\);

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\( \sqrt {8{y^2}} = \sqrt {4.2{y^2}} \)

\(= 2\left| y \right|\sqrt 2 = - 2y\sqrt 2 \) (với \(y < 0\))

LG câu c

\(\sqrt {25{x^3}} \) với \(x > 0\);

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\( \sqrt {25{x^3}} = \sqrt {25{x^2}x} \) 

\( = 5\left| x \right|\sqrt x = 5x\sqrt x  \) (với \(x > 0\))

LG câu d

\(\sqrt {48{y^4}} \) 

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\(\sqrt {48{y^4}}  = \sqrt {16.3{y^4}}  = 4{y^2}\sqrt 3 \) (vì \(y^2\ge 0\) với mọi \(y\))

Loigiaihay.com


Bình chọn:
4.4 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com, cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.