Bài 43 trang 142 SBT toán 7 tập 1


Đề bài

Cho tam giác \(ABC\) có \(\widehat A = 90^\circ \), trên cạnh \(BC\) lấy điểm \(E\) sao cho \(BE = BA.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\)

a) So sánh các độ dài \(DA\) và \(DE.\)

b) Tính số đo góc \(BED.\)

Phương pháp giải - Xem chi tiết

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

a) Xét \(∆ABD\) và \(∆EBD\), ta có:

\(AB = BE\) (gt)

\(\widehat {AB{\rm{D}}} = \widehat {EBD}\) (vì \(BD\) là tia phân giác góc \(B\))

\(BD\) cạnh chung

\( \Rightarrow   ∆ABD = ∆EBD\) (c.g.c)

\( \Rightarrow  DA = DE\) (hai cạnh tương ứng).

b) Ta có:  \(∆ABD = ∆EBD\) (chứng minh trên)

\( \Rightarrow   \widehat A = \widehat {BE{\rm{D}}}\) (hai góc tương ứng)

Mà \(\widehat A = 90^\circ \) nên \(\widehat {BE{\rm{D}}} = 90^\circ \).

Loigiaihay.com


Bình chọn:
4.5 trên 29 phiếu

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài