Bài 43 trang 12 SBT toán 9 tập 1


giải bài 43 trang 12 sách bài tập toán 9. Tìm x thỏa mãn điều kiện...(2x - 3)(x -1)..

Lựa chọn câu để xem lời giải nhanh hơn

Tìm \(x\) thỏa mãn điều kiện

LG câu a

\( \displaystyle\sqrt {{{2x - 3} \over {x - 1}}}  = 2\) 

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Với phần a), c) ta áp dụng:

- Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

Với b), d) ta áp dụng:

- Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết:

Ta có:

\( \displaystyle\sqrt {{{2x - 3} \over {x - 1}}} \)  xác định khi và chỉ khi   \( \displaystyle{{2x - 3} \over {x - 1}} \ge 0\) 

Trường hợp 1:  

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Trường hợp 2: 

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \le 0 \hfill \cr 
x - 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \le 3 \hfill \cr 
x < 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \le 1,5 \hfill \cr 
x < 1 \hfill \cr} \right. \Leftrightarrow x < 1 \cr} \)

Với \(x ≥ 1,5\) hoặc \(x < 1\) ta có:

\( \displaystyle\eqalign{
& \sqrt {{{2x - 3} \over {x - 1}}} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Rightarrow 2x - 3 = 4(x - 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị \(x = 0,5\) thỏa mãn điều kiện \(x < 1.\)

LG câu b

\( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Với phần a), c) ta áp dụng:

- Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

Với b), d) ta áp dụng:

- Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết:

Ta có: \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }}\) xác định khi và chỉ khi:

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Với \(x ≥ 1,5\) ta có: 

\( \displaystyle\eqalign{
& {{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Leftrightarrow 2x - 3 = 4(x - 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị \(x = 0,5\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

LG câu c

\( \displaystyle\sqrt {{{4x + 3} \over {x + 1}}}  = 3\) 

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Với phần a), c) ta áp dụng:

- Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

Với b), d) ta áp dụng:

- Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{4x + 3} \over {x + 1}}} \) xác định khi và chỉ khi \( \displaystyle{{4x + 3} \over {x + 1}} \ge 0\)

Trường hợp 1:  

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Trường hợp 2:  

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \le 0 \hfill \cr 
x + 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \le - 3 \hfill \cr 
x < - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x < - 1 \hfill \cr} \right. \Leftrightarrow x < - 1 \cr} \)

Với \(x ≥ -0,75\) hoặc \(x < -1\) ta có:

\( \displaystyle\eqalign{
& \sqrt {{{4x + 3} \over {x + 1}}} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr  
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2 \cr} \)

Giá trị \(x = -1,2\) thỏa mãn điều kiện \(x < -1\).

LG câu d

\( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Với phần a), c) ta áp dụng:

- Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

Với b), d) ta áp dụng:

- Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết:

Ta có : \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }}\) xác định khi và chỉ khi:

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Với \(x ≥ -0,75\) ta có: 

\( \displaystyle\eqalign{
& {{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2\,(ktm) \cr} \)

Vậy không có giá trị nào của x để \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Loigiaihay.com


Bình chọn:
3 trên 4 phiếu

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com