Bài 42 trang 12 SBT toán 9 tập 1


Giải 42 trang 12 sách bài tập toán 9. bài Rút gọn biểu thức với điều kiện đã cho của x rồi tính giá trị của nó...x - 3...

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn biểu thức với điều kiện đã cho của x rồi tính giá trị của nó:

LG câu a

\( \displaystyle\sqrt {{{{{(x - 2)}^4}} \over {{{(3 - x)}^2}}}}  + {{{x^2} - 1} \over {x - 3}}\)

(\(x < 3\)); tại \(x = 0,5\) ;

Phương pháp giải:

Sử dụng \(\sqrt {{A^2}}  = \left| A \right|\)  

Với \(A \ge 0\) thì \(\left| A \right| = A\)

với \(A < 0\) thì \(\left| A \right| = - A\).

Với \(A \ge 0,B \ge 0\) thì \(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt A }}{{\sqrt B }}\)

Lời giải chi tiết:

Ta có: 

\( \displaystyle\eqalign{
& \sqrt {{{{{(x - 2)}^4}} \over {{{(3 - x)}^2}}}} + {{{x^2} - 1} \over {x - 3}} \cr 
& = {{\sqrt {{{(x - 2)}^4}} } \over {\sqrt {{{(3 - x)}^2}} }} + {{{x^2} - 1} \over {x - 3}} \cr 
& = {{{{(x - 2)}^2}} \over {\left| {3 - x} \right|}} + {{{x^2} - 1} \over {x - 3}} \cr} \)

\( \displaystyle\eqalign{
& = {{{x^2} - 4x + 4} \over {3 - x}} + {{{x^2} - 1} \over {x - 3}} \cr 
& = {{ - {x^2} + 4x - 4} \over {x - 3}} + {{{x^2} - 1} \over {x - 3}} \cr} \)

\( \displaystyle = {{4x - 5} \over {x - 3}}\) (\(x<3\))

Với \(x = 0,5\) ta có: 

\( \displaystyle\eqalign{
& {{4.0,5 - 5} \over {0,5 - 3}} = {{ - 3} \over { - 2,5}} \cr 
& = {3 \over {2,5}} = {6 \over 5} = 1,2 \cr} \)

LG câu b

\( \displaystyle4x - \sqrt 8  + {{\sqrt {{x^3} + 2{x^2}} } \over {\sqrt {x + 2} }}\)

(\(x > -2\)); tại \( x =\displaystyle - \sqrt 2 \) 

Phương pháp giải:

Sử dụng \(\sqrt {{A^2}}  = \left| A \right|\)  

Với \(A \ge 0\) thì \(\left| A \right| = A\)

với \(A < 0\) thì \(\left| A \right| = - A\).

Với \(A \ge 0,B \ge 0\) thì \(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt A }}{{\sqrt B }}\)

Lời giải chi tiết:

Với \(x > -2,\) ta có: 

\( \displaystyle\eqalign{
& 4x - \sqrt 8 + {{\sqrt {{x^3} + 2{x^2}} } \over {\sqrt {x + 2} }} \cr 
& = 4x - \sqrt 8 + \sqrt {{{{x^3} + 2{x^2}} \over {x + 2}}} \cr} \)

\( \displaystyle\eqalign{
& = 4x - \sqrt 8 + \sqrt {{{{x^2}(x + 2)} \over {x + 2}}} \cr 
& = 4x - \sqrt 8 + \sqrt {{x^2}} \cr & = 4x - \sqrt 8 + \left| x \right| \cr} \)

+) Nếu \(x \ge 0 \) thì \( \displaystyle\left| x \right| = x\)

Ta có: 

\( \displaystyle\eqalign{
& 4x - \sqrt 8 + \left| x \right| \cr 
& = 4x - \sqrt 8 + x = 5x - \sqrt 8 \cr} \)

+) Nếu \(-2 < x < 0\) thì \( \displaystyle\left| x \right| =  - x\)

Ta có: 

\( \displaystyle4x - \sqrt 8  + \left| x \right|\)\( = 4x - \sqrt 8  - x = 3x - \sqrt 8 \)

Với \(x =  - \sqrt 2 <0\) ta có: \( \displaystyle3\left( { - \sqrt 2 } \right) - \sqrt 8\)\(  =  - 3\sqrt 2  - 2\sqrt 2  =  - 5\sqrt 2 \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com