Bài 38 trang 11 SBT toán 9 tập 1


Giải bài 38 trang 11 sách bài tập toán 9. Cho các biểu thức..(2x + 3)/(x - 3)...

Lựa chọn câu để xem lời giải nhanh hơn

Cho các biểu thức: 

A = \( \displaystyle\sqrt {{{2x + 3} \over {x - 3}}} \) và B = \( \displaystyle{{\sqrt {2x + 3} } \over {\sqrt {x - 3} }}\) 

LG câu a

Tìm \(x\) để A có nghĩa. Tìm \(x\) để B có nghĩa .

Phương pháp giải:

Áp dụng: 

+) Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\) 

+) Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l}
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{2x + 3} \over {x - 3}}} \) có nghĩa khi và chỉ khi \( \displaystyle{{2x + 3} \over {x - 3}} \ge 0\) 

Trường hợp 1:

\(\begin{array}{l}
\left\{ \begin{array}{l}
2x + 3 \ge 0\\
x - 3 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x \ge - 3\\
x > 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \dfrac{{ - 3}}{2}\\
x > 3
\end{array} \right. \Leftrightarrow x > 3
\end{array}\) 

Trường hợp 2: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
2x + 3 \le 0\\
x - 3 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x \le - 3\\
x < 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \le \dfrac{{ - 3}}{2}\\
x < 3
\end{array} \right. \Leftrightarrow x \le \dfrac{{ - 3}}{2}
\end{array}\) 

Vậy với \(x > 3\) hoặc x \( \displaystyle \le \)  \( \displaystyle - {3 \over 2}\) thì biểu thức A có nghĩa.

Ta có: \( \displaystyle{{\sqrt {2x + 3} } \over {\sqrt {x - 3} }}\)  có nghĩa khi và chỉ khi: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
2x + 3 \ge 0\\
x - 3 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x \ge - 3\\
x > 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge \dfrac{{ - 3}}{2}\\
x > 3
\end{array} \right. \Leftrightarrow x > 3
\end{array}\) 

Vậy \(x > 3\) thì biểu thức B có nghĩa.

LG câu b

Với giá trị nào của \(x\) thì \(A=B?\)

Phương pháp giải:

Sử dụng kết quả câu a và công thức \(\sqrt{\dfrac{A}B}=\dfrac{\sqrt A}{\sqrt B}\) với \(A\ge 0, B>0\). 

Lời giải chi tiết:

Với \(x > 3\) thì A và B đồng thời có nghĩa.

Khi đó: \(A=B\)

\( \Leftrightarrow \displaystyle\sqrt {{{2x + 3} \over {x - 3}}} = \displaystyle{{\sqrt {2x + 3} } \over {\sqrt {x - 3} }}\) (luôn đúng)

Vậy với \(x > 3\) thì \(A = B\). 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 14 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài