Bài 38 trang 34 SBT toán 8 tập 1>
Giải bài 38 trang 34 sách bài tập toán 8. Rút gọn biểu thức : ...
Rút gọn biểu thức :
LG a
\(\displaystyle{{{x^4} - x{y^3}} \over {2xy + {y^2}}}:{{{x^3} + {x^2}y + x{y^2}} \over {2x + y}}\)
Phương pháp giải:
- Áp dụng quy tắc chia hai phân thức :
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
- Muốn rút gọn một phân thức ta có thể :
+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;
+ Chia cả tử và mẫu cho nhân tử chung.
Giải chi tiết:
\(\displaystyle{{{x^4} - x{y^3}} \over {2xy + {y^2}}}:{{{x^3} + {x^2}y + x{y^2}} \over {2x + y}}\)
\(\displaystyle = {{{x^4} - x{y^3}} \over {2xy + {y^2}}}.{{2x + y} \over {{x^3} + {x^2}y + x{y^2}}} \)
\(\displaystyle= {{x\left( {{x^3} - {y^3}} \right)\left( {2x + y} \right)} \over {y\left( {2x + y} \right).x\left( {{x^2} + xy + {y^2}} \right)}}\)
\(\displaystyle = {{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)} \over {y\left( {{x^2} + xy + {y^2}} \right)}} = {{x - y} \over y}\)
LG b
\(\displaystyle{{5{x^2} - 10xy + 5{y^2}} \over {2{x^2} - 2xy + 2{y^2}}}:{{8x - 8y} \over {10{x^3} + 10{y^3}}}\)
Phương pháp giải:
- Áp dụng quy tắc chia hai phân thức :
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
- Muốn rút gọn một phân thức ta có thể :
+ Phân tích tử thức và mẫu thức thành nhân tử (nếu cần) để tìm nhân tử chung;
+ Chia cả tử và mẫu cho nhân tử chung.
Giải chi tiết:
\(\displaystyle{{5{x^2} - 10xy + 5{y^2}} \over {2{x^2} - 2xy + 2{y^2}}}:{{8x - 8y} \over {10{x^3} + 10{y^3}}}\)
\(\displaystyle = {{5{x^2} - 10xy + 5{y^2}} \over {2{x^2} - 2xy + 2{y^2}}}.{{10{x^3} + 10{y^3}} \over {8x - 8y}} \)
\(\displaystyle= {{5\left( {{x^2} - 2xy + {y^2}} \right).10\left( {{x^3} + {y^3}} \right)} \over {2\left( {{x^2} - xy + {y^2}} \right).8\left( {x - y} \right)}}\)
\(\displaystyle = {{25{{\left( {x - y} \right)}^2}\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)} \over {8\left( {{x^2} - xy + {y^2}} \right)\left( {x - y} \right)}} \)
\(\displaystyle= {{25\left( {x - y} \right)\left( {x + y} \right)} \over 8}\)
Loigiaihay.com
- Bài 39 trang 34 SBT toán 8 tập 1
- Bài 40 trang 34 SBT toán 8 tập 1
- Bài 41 trang 34 SBT toán 8 tập 1
- Bài 42 trang 35 SBT toán 8 tập 1
- Bài 43 trang 35 SBT toán 8 tập 1
>> Xem thêm