Bài 32 trang 33 SBT toán 8 tập 1


Giải bài 32 trang 33 sách bài tập toán 8. Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức:...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức :

LG a

\(\displaystyle{{{x^3}} \over {x + 1975}}.{{2x + 1954} \over {x + 1}} \) \(\displaystyle + {{{x^3}} \over {x + 1975}}.{{21 - x} \over {x + 1}}\)

Phương pháp giải:

- Áp dụng tính chất phân phối của phép nhân dối với phép cộng:

\(\dfrac{A}{B}\left( {\dfrac{C}{D} + \dfrac{E}{F}} \right) = \dfrac{A}{B}.\dfrac{C}{D} + \dfrac{A}{B}.\dfrac{E}{F}\)

- Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

Lời giải chi tiết:

\(\displaystyle{{{x^3}} \over {x + 1975}}.{{2x + 1954} \over {x + 1}} \) \(\displaystyle + {{{x^3}} \over {x + 1975}}.{{21 - x} \over {x + 1}}\)

\(\displaystyle = {{{x^3}} \over {x + 1975}}.\left( {{{2x + 1954} \over {x + 1}} + {{21 - x} \over {x + 1}}} \right)\)

\(\displaystyle = {{{x^3}} \over {x + 1975}}.{{x + 1975} \over {x + 1}} \) \(\displaystyle  = {{{x^3}\left( {x + 1975} \right)} \over {\left( {x + 1975} \right)\left( {x + 1} \right)}} \) \(\displaystyle  = {{{x^3}} \over {x + 1}}\)

LG b

\(\displaystyle{{19x + 8} \over {x - 7}}.{{5x - 9} \over {x + 1945}} \) \(\displaystyle- {{19x + 8} \over {x - 7}}.{{4x - 2} \over {x + 1945}}\)

Phương pháp giải:

- Áp dụng tính chất phân phối của phép nhân dối với phép cộng:

\(\dfrac{A}{B}\left( {\dfrac{C}{D} + \dfrac{E}{F}} \right) = \dfrac{A}{B}.\dfrac{C}{D} + \dfrac{A}{B}.\dfrac{E}{F}\)

- Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

Lời giải chi tiết:

\(\displaystyle{{19x + 8} \over {x - 7}}.{{5x - 9} \over {x + 1945}} \) \(\displaystyle  - {{19x + 8} \over {x - 7}}.{{4x - 2} \over {x + 1945}}\)\(\displaystyle = {{19x + 8} \over {x - 7}}.\left( {{{5x - 9} \over {x + 1945}} - {{4x - 2} \over {x + 1945}}} \right)\)

\(\displaystyle  = {{19x + 8} \over {x - 7}}.\left( {{{5x - 9} \over {x + 1945}} + {{2 - 4x} \over {x + 1945}}} \right) \) \(\displaystyle  = {{19x + 8} \over {x - 7}}.{{x - 7} \over {x + 1945}}\)

\(\displaystyle = {{\left( {19x + 8} \right)\left( {x - 7} \right)} \over {\left( {x - 7} \right)\left( {x + 1945} \right)}}  \) \(\displaystyle = {{19x + 8} \over {x + 1945}} \)

Loigiaihay.com


Bình chọn:
4.2 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí