Bài 21 trang 40 SBT toán 7 tập 2


Giải bài 21 trang 40 sách bài tập toán 7. Cho hình 5. Chứng minh rằng MA + MB < IA + IB < CA + CB

Đề bài

Cho hình 5. Chứng minh rằng \(MA + MB < IA + IB < CA  + CB\)

Phương pháp giải - Xem chi tiết

Trong một tam giác:

+) Hiệu độ dài hai cạnh bất kỳ bao giờ cũng nhỏ hơn độ dài cạnh còn lại
+) Độ dài một cạnh bao giờ cũng nhỏ hơn tổng độ dài của hai cạnh còn lại
Chẳng hạn: Trong tam giác \(ABC\), ta có: \(AB - AC < BC < AB + AC.\)

Lời giải chi tiết

Trong \(∆AMI\) ta có:

\( MA < MI + IA\) (bất đẳng thức tam giác)

Cộng vào 2 vế bất đẳng thức với \(MB\) ta có:

\( MA + MB  < MI  +  IA  +  MB\)

\( \Rightarrow  MA + MB < IB  + IA \) (1)

Trong \(∆BIC\) ta có:

\(IB <  IC  + CB\) (bất đẳng thức tam giác)

Cộng vào 2 vế bất đẳng thức với \(IA\) ta có:

\(IB  + IA < IC  + CB + IA\)

\( \Rightarrow IB  + IA < CA  + CB\)   (2)

Từ (1) và (2) suy ra:  \(MA +  MB < IB + IA < CA + CB\)

Loigiaihay.com


Bình chọn:
4.4 trên 12 phiếu
  • Bài 22 trang 40 SBT toán 7 tập 2

    Giải bài 22 trang 40 sách bài tập toán 7. Tính chu vi của một tam giác cân có hai cạnh bằng 4m và 9m.

  • Bài 23 trang 40 SBT toán 7 tập 2

    Giải bài 23 trang 40 sách bài tập toán 7. Cho tam giác ABC trong đó BC là cạnh lớn nhất. a) Vì sao các góc B và C không thể là góc vuông hoặc góc tù? b) Gọi AH là đường vuông góc kẻ từ A đến BC. So sánh AB + AC với BH + CH rồi chứng minh rằng AB + AC > BC.

  • Bài 24 trang 41 SBT toán 7 tập 2

    Giải bài 24 trang 41 sách bài tập toán 7. Cho hai điểm A và B nằm về hai phía của đường thẳng d. Tìm điểm C thuộc đường thẳng d sao cho tổng AC + CB là nhỏ nhất.

  • Bài 25 trang 41 SBT toán 7 tập 2

    Giải bài 25 trang 41 sách bài tập toán 7. Ba thành phố A, B C trên bản đồ là ba đỉnh của một tam giác, trong đó AC = 30km, AB = 70km a) Nếu đặt ở C máy phát sóng truyền thanh có bán kính hoạt động bằng 40km thì thành phố B có nhận được tín hiệu không? Vì sao?

  • Bài 26 trang 41 SBT toán 7 tập 2

    Giải bài 26 trang 41 sách bài tập toán 7. Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD nhỏ hơn nửa chu vi tam giác ABC.

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí