Bài 17 trang 64 SBT toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài 17 trang 64 sách bài tập toán 9. Vẽ trên cùng hệ trục tọa độ Oxy đồ thị các hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Vẽ trên cùng hệ trục tọa độ \(Oxy\) đồ thị các hàm số sau: 

\(y = x\)  (d1)  ; 

\(y = 2x\)  (d2);

\(y = -x + 3\) (d3).

Phương pháp giải:

Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)

Nếu \(b = 0\)  ta có hàm số \(y = ax\) . Đồ thị của  \(y = ax\)  là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);

Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).

Lời giải chi tiết:

* Vẽ đồ thị của hàm số \(y = x\)

Cho \(x = 0\) thì \(y = 0\)

Cho \(x = 1\) thì \(y = 1\)

Đồ thị hàm số \(y = x\) là đường thẳng đi qua gốc tọa độ O(0;0) và điểm (1;1)

* Vẽ đồ thị của hàm số \(y = 2x\)

Cho \(x = 0\) thì \(y = 0\)

Cho \(x = 1\) thì \(y = 2\)

Đồ thị hàm số \(y = 2x\) là đường thẳng đi qua gốc tọa độ O(0;0) và điểm (1;2)

* Vẽ đồ thị của hàm số \(y = -x + 3\)

Cho \(x = 0\) thì \(y = 3\). Ta có điểm (0;3)

Cho \(y = 0\) thì \(x = 3\). Ta có điểm (3;0)

Đồ thị hàm số \(y = -x + 3\) là đường thẳng đi qua hai điểm (0;3) và điểm (3;0)

LG b

Đường thẳng (d3) cắt các đường thẳng (d1); (d2) theo thứ tự tại \(A, B.\)

Tìm tọa độ của các điểm \(A, B\) và tính diện tích tam giác \(OAB.\)

Phương pháp giải:

Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)

Nếu \(b = 0\)  ta có hàm số \(y = ax\) . Đồ thị của  \(y = ax\)  là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);

Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).

Lời giải chi tiết:

* Gọi \(A\left( {{x_1};{y_1}} \right),\,\,B\left( {{x_2};{y_2}} \right)\),  lần lượt là tọa độ giao điểm của đường thẳng (d3) với  hai đường thẳng (d1); (d2).

Ta có: \(A(x_1;y_1)\) thộc đường thẳng \(y = x\) nên \({y_1} = {x_1}\)

\(A(x_1;y_1)\) thuộc đường thẳng \(y = -x + 3\) nên \({y_1} =  - {x_1} + 3\)

Suy ra:

\(\eqalign{
& {x_1} = - {x_1} + 3 \cr 
& \Leftrightarrow 2{x_1} = 3 \cr 
& \Leftrightarrow {x_1} = 1,5 \cr} \)

\({x_1} = 1,5 \Rightarrow {y_1} = 1,5\)           

Vậy tọa độ giao điểm của hai đường thẳng (d1) và (d2) là \(A(1,5;1,5).\)

Ta có:

\(B(x_2;y_2)\) thuộc đường thẳng \(y = 2x\) nên \({y_2} = 2{x_2}\)

\(B(x_2;y_2)\) thuộc đường thẳng \(y = -x + 3\) nên \({y_2} =  - {x_2} + 3\)

Suy ra :

\(\eqalign{
& 2{x_2} = - {x_2} + 3 \cr 
& \Leftrightarrow 3{x_2} = 3 \cr 
& \Leftrightarrow {x_2} = 1 \cr} \)

\({x_2} = 1 \Rightarrow {y_2} = 2\)         

Vậy tọa độ giao điểm của hai đường thẳng (d1) và (d2) là B(1;2).

\(\eqalign{
& {S_{OBD}} = \frac{1}{2}.2.3 = 3\,\left( {c{m^2}} \right) \cr 
& {S_{OAD}} = \frac{1}{2}.1,5.3 = 2,25\,\,\left( {c{m^2}} \right) \cr 
& \Rightarrow {S_{OAB}} = {S_{OBD}} - {S_{OAD}} \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\, = 3 - 2,25 = 0,75\left( {c{m^2}} \right) \cr} \)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay