Bài 14 trang 64 SBT toán 9 tập 1


Giải bài 14 trang 64 sách bài tập toán 9. Vẽ đồ thị của các hàm số sau trên cũng một mặt phẳng tọa độ:

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Vẽ đồ thị của các hàm số sau trên cũng một mặt phẳng tọa độ:  

\(y = x + \sqrt 3\);   (1)

\(y = 2x + \sqrt 3 \);    (2)

Phương pháp giải:

Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)

Nếu \(b = 0\)  ta có hàm số \(y = ax\) . Đồ thị của  \(y = ax\)  là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);

Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).

Lời giải chi tiết:

*) Vẽ đồ thị của hàm số \(y = x + \sqrt 3 \) 

Cho x = 0 thì \(y = \sqrt 3 \). Ta có: \(A\left( {0;\sqrt 3 } \right)\)

Cho y = 0 thì \(x + \sqrt 3  = 0 \Rightarrow x =  - \sqrt 3 \). Ta có: \(B\left( { - \sqrt 3 ;0} \right)\)

*) Cách tìm điểm có tung độ bằng \(\sqrt 3 \) trên trục Oy:

-   Dựng điểm M(1;1). Ta có: \(OM =\sqrt{1^2+1^2}= \sqrt 2 \)

-   Dựng cung tròn tâm O bán kính OM cắt trục Ox tại điểm có hoành độ bằng \(\sqrt 2 \) .

-   Dựng điểm \(N\left( {1;\sqrt 2 } \right)\). Ta có: \(ON =\sqrt {1^2+(\sqrt 2)^2}= \sqrt 3 \)

-   Vẽ cung tròn tâm O bán kính ON cắt trục Oy tại A có tung độ \(\sqrt 3 \) cắt tia đối của Ox tại B có hoành độ \(-\sqrt 3 \) .

Đồ thị của hàm số \(y = x + \sqrt 3 \) là đường thẳng AB.

*) Vẽ đồ thị của hàm số \(y = 2x + \sqrt 3 \)

Cho x = 0 thì \(y = \sqrt 3 \). Ta có: \(A\left( {0;\sqrt 3 } \right)\)

Cho y = 0 thì \(2x + \sqrt 3  = 0 \Rightarrow x =  - \dfrac{{\sqrt 3 }}{2}\). Ta có: \(C\left( { - \dfrac{{\sqrt 3 } }{2};0} \right)\)

Đồ thị của hàm số \(y = 2x + \sqrt 3 \) là đường thẳng AC

LG b

Gọi giao điểm của đường thẳng \(y = x + \sqrt 3 \) với các trục Oy, Ox theo thứ tự là A, B và giao điểm của đường thẳng \(y = 2x + \sqrt 3 \) với các trục Oy, Ox theo thứ tự là A, C. Tính các góc của tam giác ABC (dùng máy tính bỏ túi CASIO fx-220 hoặc CASIO fx-500A).

Phương pháp giải:

Sử dụng định nghĩa tỉ số lượng giác của góc nhọn

Sử dụng định lý tổng ba góc trong tam giác bằng \(180^0\)

Lời giải chi tiết:

Xét tam giác \(ABO\) vuông tại \(O\), có: \(tg\widehat {ABO} = \dfrac{{OA}}{{OB}} = \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = 1\)\( \Rightarrow \widehat {ABO} = {45^0}\) hay \(\widehat {ABC} = {45^0}\)

Xét tam giác \(ACO\) vuông tại \(O\), có: \(tg\widehat {ACO} = \dfrac{{OA}}{{OC}} = \dfrac{{\sqrt 3 }}{{\dfrac{{\sqrt 3 }}{ 2}}} = 2\)\( \Rightarrow \widehat {ACO} = {63^0}26'\)

Ta có: \(\widehat {ACO} + \widehat {ACB} = {180^0}\) (hai góc kề bù)

Suy ra : \(\widehat {ACB} = {180^0} - \widehat {ACO}\)\( = {180^0} - {63^0}26' = {116^0}34'\)

Lại có: \(\widehat {ACB} + \widehat {ABC} + \widehat {BAC} = {180^0}\) (tổng ba góc trong tam giác \(ABC\))

Suy ra:

\(\eqalign{
& \widehat {BAC} = {180^0} - \left( {\widehat {ACB} + \widehat {ABC}} \right) \cr 
& = {180^0} - \left( {{{45}^0} + {{116}^0}34'} \right) = {18^0}26' \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài