Bài 14* trang 158 SBT toán 9 tập 1


Giải bài 14* trang 158 sách bài tập toán 9. Cho đường tròn (O) và hai điểm A, B nằm bên ngoài đường tròn. Dựng đường kính COD sao cho AC = BD...

Đề bài

Cho đường tròn (O) và hai điểm \(A, B\) nằm bên ngoài đường tròn. Dựng đường kính \(COD\) sao cho \(AC = BD.\) 

Phương pháp giải - Xem chi tiết

Sử dụng tính chất đường trung trực của đoạn thẳng.

Các bước dựng hình:

+ Dựng điểm \(A'\) đối xứng với \(A\) qua \(O.\)

+ Dựng đường trung trực d của \(A'B\), cắt (O) tại \(D\).

+ Dựng đường kính \(COD\).

Lời giải chi tiết

*        Cách dựng

−     Dựng \(A'\) đối xứng với \(A\) qua tâm \(O\) của đường tròn.

−     Dựng đường thẳng \(d\) là đường trung trực của \(A’B.\)

−     Gọi giao điểm của đường thẳng \(d\) và đường tròn (O) là \(D.\)

−     Dựng đường kính \(COD.\) 

*         Chứng minh

Ta có: \(OA = OA’\) (do A và A' đối xứng nhau qua O) và \(OD = OC\) (do C, D cùng thuộc đường tròn (O))

Suy ra tứ giác \(ACA’D\) là hình bình hành (vì có hai đường chéo AA' và CD giao nhau tại trung điểm O của mỗi đường) 

Suy ra: \(AC = A’D\) (tính chất hình bình hành)

Lại có: \(A’D = DB\) (tính chất đường trung trực)

Suy ra: \(AC = BD.\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài