

Bài 14* trang 158 SBT toán 9 tập 1>
Giải bài 14* trang 158 sách bài tập toán 9. Cho đường tròn (O) và hai điểm A, B nằm bên ngoài đường tròn. Dựng đường kính COD sao cho AC = BD...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho đường tròn (O) và hai điểm \(A, B\) nằm bên ngoài đường tròn. Dựng đường kính \(COD\) sao cho \(AC = BD.\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất đường trung trực của đoạn thẳng.
Các bước dựng hình:
+ Dựng điểm \(A'\) đối xứng với \(A\) qua \(O.\)
+ Dựng đường trung trực d của \(A'B\), cắt (O) tại \(D\).
+ Dựng đường kính \(COD\).
Lời giải chi tiết
* Cách dựng
− Dựng \(A'\) đối xứng với \(A\) qua tâm \(O\) của đường tròn.
− Dựng đường thẳng \(d\) là đường trung trực của \(A’B.\)
− Gọi giao điểm của đường thẳng \(d\) và đường tròn (O) là \(D.\)
− Dựng đường kính \(COD.\)
* Chứng minh
Ta có: \(OA = OA’\) (do A và A' đối xứng nhau qua O) và \(OD = OC\) (do C, D cùng thuộc đường tròn (O))
Suy ra tứ giác \(ACA’D\) là hình bình hành (vì có hai đường chéo AA' và CD giao nhau tại trung điểm O của mỗi đường)
Suy ra: \(AC = A’D\) (tính chất hình bình hành)
Lại có: \(A’D = DB\) (tính chất đường trung trực)
Suy ra: \(AC = BD.\)
Loigiaihay.com


- Bài 1.1 phần bài tập bổ sung trang 158 SBT toán 9 tập 1
- Bài 1.2 phần bài tập bổ sung trang 158 SBT toán 9 tập 1
- Bài 1.3 phần bài tập bổ sung trang 158 SBT toán 9 tập 1
- Bài 13* trang 158 SBT toán 9 tập 1
- Bài 12 trang 158 SBT toán 9 tập 1
>> Xem thêm