Bài 10 trang 62 SBT toán 9 tập 1


Giải bài 10 trang 62 sách bài tập toán 9. Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.

Đề bài

Chứng minh rằng hàm số bậc nhất \(y = ax + b\) đồng biến khi \(a > 0\) và nghịch biến khi \(a < 0.\) 

Phương pháp giải - Xem chi tiết

- Tìm tập xác định (TXĐ) D của hàm số

- Giả sử \({x_1} < {x_2}\) với  (\({x_1};{x_2} \in D\)). Xét hiệu \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right).\)

+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) < 0\) hay \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\) thì hàm số đồng biến trên D.

+ Nếu \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\) hay \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\) thì hàm số nghịch biến trên D.

Lời giải chi tiết

Xét hàm số bậc nhất \(y = ax +b\) ( \(a \ne 0\) ) trên tập số thực \(R.\) 

Với hai số \(x_1\) và \(x_2\) thuộc \(R\) và \({x_1} < {x_2}\) , ta có :

\({y_1} = a{x_1} + b\)

\({y_2} = a{x_2} + b\)

\({y_2} - {y_1} = \left( {a{x_2} + b} \right) - \left( {a{x_1} + b} \right)\)\( = a\left( {{x_2} - {x_1}} \right)\)    (1)

Trường hợp \(a > 0:\)

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\) (2)

Từ (1) và (2) suy ra: \({y_2} - {y_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) > 0 \Rightarrow {y_2} >{y_1}\)

Vậy hàm số đồng biến khi \(a > 0.\)

Trường hợp \(a < 0\):

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\) (3)

Từ (1) và (3) suy ra:

\({y_2} - {{\rm{y}}_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) < 0 \Rightarrow {y_2} < {y_1}\)

Vậy hàm số nghịch biến khi \(a < 0.\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

Các bài liên quan: - Bài 2. Hàm số bậc nhất

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài