Bài tập 10 trang 69 Tài liệu dạy – học Toán 8 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Đường phân giác của góc BAC cắt cạnh BC tại A.

Đề bài

Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Đường phân giác của góc BAC cắt cạnh BC tại A.

a) Tính độ dài các đoạn thẳng DB và DC.

b) Tính tỉ số diện tích giữa hai tam giác ADB và ADC.

Lời giải chi tiết

 

a) ∆ABC có AD là đường phân giác nên \({{DB} \over {DC}} = {{AB} \over {AC}}\)

\( \Rightarrow {{DB} \over {AB}} = {{DC} \over {AC}} = {{DB + DC} \over {AB + AC}} = {{BC} \over {AB + AC}} \)

\(\Rightarrow {{DB} \over 6} = {{DC} \over 8} = {{10} \over {6 + 8}} = {{10} \over {14}} = {5 \over 7}\)

Do đó \(DB = {5 \over 7}.6 = {{30} \over 7}(cm),\)

          \(DC = {5 \over 7}.8 = {{40} \over 7}(cm)\)

b) Ta có \({{{S_{ADB}}} \over {{S_{ADC}}}} = {{{1 \over 2}DB} \over {{1 \over 2}DC}}\)

(chung đường cao hạ từ A đến BC)

\( \Rightarrow {{{S_{ADB}}} \over {{S_{ADC}}}} = {{DB} \over {DC}} = {{{{30} \over 7}} \over {{{40} \over 7}}} = {3 \over 4}\)

Loigiaihay.com

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Gửi văn hay nhận ngay phần thưởng