Bài tập 10 trang 69 Tài liệu dạy – học Toán 8 tập 2


Giải bài tập Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Đường phân giác của góc BAC cắt cạnh BC tại A.

Đề bài

Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Đường phân giác của góc BAC cắt cạnh BC tại A.

a) Tính độ dài các đoạn thẳng DB và DC.

b) Tính tỉ số diện tích giữa hai tam giác ADB và ADC.

Lời giải chi tiết

 

a) ∆ABC có AD là đường phân giác nên \({{DB} \over {DC}} = {{AB} \over {AC}}\)

\( \Rightarrow {{DB} \over {AB}} = {{DC} \over {AC}} = {{DB + DC} \over {AB + AC}} = {{BC} \over {AB + AC}} \)

\(\Rightarrow {{DB} \over 6} = {{DC} \over 8} = {{10} \over {6 + 8}} = {{10} \over {14}} = {5 \over 7}\)

Do đó \(DB = {5 \over 7}.6 = {{30} \over 7}(cm),\)

          \(DC = {5 \over 7}.8 = {{40} \over 7}(cm)\)

b) Ta có \({{{S_{ADB}}} \over {{S_{ADC}}}} = {{{1 \over 2}DB} \over {{1 \over 2}DC}}\)

(chung đường cao hạ từ A đến BC)

\( \Rightarrow {{{S_{ADB}}} \over {{S_{ADC}}}} = {{DB} \over {DC}} = {{{{30} \over 7}} \over {{{40} \over 7}}} = {3 \over 4}\)

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí