Bài 7.1, 7.2, 7.3, 7.4 phần bài tập bổ sung trang 21 SBT toán 7 tập 1


Giải bài 7.1, 7.2, 7.3, 7.4 phần bài tập bổ sung trang 21 sách bài tập toán 7 tập 1. Cho tỉ lệ thức 7,5/4 = 22,5/12 ...

Lựa chọn câu để xem lời giải nhanh hơn

Bài 7.1

Cho tỉ lệ thức \(\displaystyle {{7,5} \over 4} = {{22,5} \over {12}}\). Điền dấu x vào ô thích hợp trong bảng sau:

Câu

Đúng

Sai

a) Các số \(7,5\) và \(12\) là các ngoại tỉ

 

 

b) Các số \(4\) và \(7,5\) là các trung tỉ

 

 

c) Các số \(4\) và \(22,5\) là các trung tỉ

 

 

d) Các số \(22,5\) và \(12\) là các trung tỉ

 

 

e) Các số \(7,5\) và \(22,5\) là các ngoại tỉ

 

 





 

Phương pháp giải:

Tỉ lệ thức là một đẳng thức của hai số \(\dfrac{a}{b} = \dfrac{c}{d}\) ( \(a, d\) gọi là ngoại tỉ; \(c,b\) gọi là trung tỉ)

Lời giải chi tiết:

a) Đúng; b) Sai; c) Đúng; d) Sai; e) Sai.

Bài 7.2

Từ tỉ lệ thức \(\displaystyle {a \over b} = {c \over d}\) (\(a, b, c, d\) khác \(0\)) ta suy ra:

(A) \(\displaystyle {a \over d} = {b \over c}\);

(B) \(\displaystyle {a \over c} = {b \over d}\);

(C) \(\displaystyle {d \over c} = {a \over b}\);

(D) \(\displaystyle {b \over c} = {d \over a}\).

Hãy chọn đáp án đúng. 

Phương pháp giải:

a) Tính chất cơ bản: Nếu  \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(ad = bc\).

b) Điều kiện để bốn số thành lập tỉ lệ thức:

Nếu \(ad = bc\) và \(a, b, c, d\ne 0\) thì ta có các tỉ lệ thức:

 \(\dfrac{a}{b} = \dfrac{c}{d}\) \(; \dfrac{a}{c}= \dfrac{b}{d} ; \dfrac{d}{b} =\dfrac{c}{a} ; \dfrac{d}{c} = \dfrac{b}{a}\)

Lời giải chi tiết:

Chọn (B).

Bài 7.3

Cho \(\displaystyle {a \over b} = {c \over d}\) (\(a, b, c,d\) khác \(0, a ≠ b, c ≠ d\)).

Chứng minh rằng \(\displaystyle {a \over {a - b}} = {c \over {c - d}}\) 

Phương pháp giải:

\(\displaystyle {a \over b} = {c \over d} \Rightarrow ad = bc\)

\(\dfrac{a}{b} = \dfrac{{ac}}{{bc}}\,\,\left( {c \ne 0} \right)\)

Lời giải chi tiết:

\(\displaystyle {a \over b} = {c \over d} \Rightarrow ad = bc\)

\(\displaystyle {a \over {a - b}} = {{ad} \over {d(a - b)}} = {{bc} \over {ad - bd}} \)

\(\displaystyle = {{bc} \over {bc - bd}} = {{bc} \over {b(c - d)}} = {c \over {c - d}}\)

Vậy \(\displaystyle {a \over {a - b}} = {c \over {c - d}}\). 

Cách khác: 

\(\begin{array}{l}
\dfrac{a}{b} = \dfrac{c}{d}\\
\Rightarrow \dfrac{b}{a} = \dfrac{d}{c}\\
\Rightarrow 1 - \dfrac{b}{a} = 1 - \dfrac{d}{c}\\
\Rightarrow \dfrac{a}{a} - \dfrac{b}{a} = \dfrac{c}{c} - \dfrac{d}{c}\\
\Rightarrow \dfrac{{a - b}}{a} = \dfrac{{c - d}}{c}\\
\Rightarrow \dfrac{a}{{a - b}} = \dfrac{c}{{c - d}}
\end{array}\)

Bài 7.4

Cho tỉ lệ thức \(\displaystyle {a \over b} = {c \over d}\)

Chứng minh rằng \(\displaystyle {{ac} \over {bd}} = {{{a^2} + {c^2}} \over {{b^2} + {d^2}}}\) 

Phương pháp giải:

Đặt \(\displaystyle {a \over b} = {c \over d} = k\) thì \(a = kb, c = kd\).

Tính \(\displaystyle {{ac} \over {bd}}\) theo \(k\); \(\displaystyle {{{a^2} + {c^2}} \over {{b^2} + {d^2}}}\) theo \(k\).

Từ đó so sánh hai kết quả tìm được ta có được điều phải chứng minh. 

Lời giải chi tiết:

Đặt \(\displaystyle {a \over b} = {c \over d} = k\) thì \(a = kb, c = kd\).

Ta có: \(\displaystyle {{ac} \over {bd}} = {{bk.dk} \over {bd}} = {{bd.{k^2}} \over {bd}} = {k^2}\)                 (1)

\(\displaystyle {{{a^2} + {c^2}} \over {{b^2} + {d^2}}} = {{{{\left( {bk} \right)}^2} + {{\left( {dk} \right)}^2}} \over {{b^2} + {d^2}}} \)

\(\displaystyle= {{{b^2}{k^2} + {d^2}{k^2}} \over {{b^2} + {d^2}}} = {{({b^2} + {d^2}).{k^2}} \over {{b^2} + {d^2}}} = {k^2}\)   (2)

Từ (1) và (2) suy ra \(\displaystyle {{ac} \over {bd}} = {{{a^2} + {c^2}} \over {{b^2} + {d^2}}}\). 

Loigiaihay.com


Bình chọn:
4.3 trên 18 phiếu

Các bài liên quan: - Bài 7. Tỉ lệ thức

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.