Bài 53* trang 46 SBT toán 7 tập 2


Đề bài

Cho tam giác \(ABC\) vuông tại \(A.\) Các tia phân  giác của các góc \(B\) và \(C\) cắt nhau tại \(I.\) Gọi \(D\) và \(E\) là chân các đường vuông góc kẻ từ \(I\) đến  \(AB\) và \(AC.\)

a) Chứng minh rằng \(AD = AE.\)

b) Tính các độ dài \(AD, AE\) biết rằng \(AB = 6cm, AC = 8cm.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

+) Tính chất đường phân giác của góc: Các điểm nằm trên đường phân giác của một góc cách đều hai cạnh của góc đó.

+) Ba đường phân giác trong tam giác cắt nhau tại một điểm.

+) Tính chất hai tam giác bằng nhau

Lời giải chi tiết

a) Vì \(I\) là giao điểm phân giác trong của \(\widehat B\) và \(\widehat C\) nên \(AI\) là tia phân giác của \(Â.\)

\( \Rightarrow  ID = IE\) (tính chất tia phân giác)         (1)

Và \(\widehat {DAI} =\widehat {E{\rm{A}}I}=\dfrac{BAC}{2}\)\(=\dfrac{90}{2}= 45^\circ \) (vì \(AI\) là phân giác góc BAC)

Vì \(∆ADI \) vuông tại \(D\) có \(\widehat {DAI} = 45^\circ \)

Nên \(∆ADI\) vuông cân tại \(D.\)

\( \Rightarrow  ID = DA\)    (2)

Vì \(∆AEI\) vuông tại \(E\) có \(\widehat {E{\rm{A}}I} = 45^\circ \)

Nên \(∆ AEI\) vuông cân tại \(E\)

\( \Rightarrow IE = AE\)      (3)

Từ (1), (2) và (3) suy ra: \(AD = AE\)

b) Trong tam giác vuông \(ABC\) có \( Â=90°\)

Theo định lý Pitago ta có:

\(\eqalign{
& B{C^2} = A{B^2} + A{C^2} \cr 
& B{C^2} = {6^2} + {8^2} = 36 + 64 = 100 \cr} \)

\( \Rightarrow BC = 10 \,(cm)\)

Kẻ \(IF \bot BC\)

Xét hai tam giác vuông \(IDB\) và \(IFB:\)

+) \( \widehat {IDB} = \widehat {IFB} = 90^\circ \)
+) \( \widehat {DBI} = \widehat {FBI}\left( {gt} \right) \)

+) Cạnh huyền \(BI\) chung

Do đó:  \(∆IDB = ∆IFB\) (cạnh huyền, góc nhọn)

\( \Rightarrow  DB = FB   \)        (4)

Xét hai tam giác vuông \(IEC\) và \(IFC:\)

+) \( \widehat {IEC} = \widehat {IFC} = 90^\circ \)
+) \( \widehat {ECI} = \widehat {FCI}\left( {gt} \right) \)

+) Cạnh huyền \(CI\) chung  

Do đó: \(∆IEC = ∆IFC\) (cạnh huyền, góc nhọn)

\( \Rightarrow  CE = CF\)        (5)

Mà \(AD + AE \)\(= AB – DB + AC – CE\)

\( \Rightarrow AD + AE \)\(= AB + AC – (DB + CE)\)        (6)

Từ (4), (5) và (6) suy ra:

\(AD + AE = AB + AC – (FB + FC)\)\( = AB + AC – BC\)

\(AD + AE = 6 + 8 – 10 = 4\) (cm)

Mà \(AD = AE\) (chứng minh trên)

\( \Rightarrow  AD = AE = 4: 2 = 2 (cm)\)

Loigiaihay.com


Bình chọn:
4.4 trên 5 phiếu
  • Bài 6.1, 6.2, 6.3, 6.4 phần bài tập bổ sung trang 47 SBT toán 7 tập 2

    Giải bài 6.1, 6.2, 6.3, 6.4 phần bài tập bổ sung trang 47 sách bài tập toán 7. Cho tam giác ABC. Trên tia phân giác của góc B, lấy điểm O nằm trong tam giác ABC sao cho O cách đều hai cạnh AB, AC. Khẳng định nào sau đây sai?...

  • Bài 52 trang 46 SBT toán 7 tập 2

    Giải bài 52 trang 46 sách bài tập toán 7. Cho tam giác ABC. Các tia phân giác các góc A và C cắt nhau ở I. Các đường phân giác các góc ngoài tại đỉnh A và C cắt nhau ở K. Chứng minh rằng ba điểm B, I, K thẳng hàng.

  • Bài 51 trang 46 SBT toán 7 tập 2

    Giải bài 51 trang 46 sách bài tập toán 7. Tính góc A của tam giác ABC biết rằng các đường phân giác BD, CE cắt nhau tại I trong đó góc BIC bằng: a) 120° b) ∝(∝ > 90°)

  • Bài 50 trang 46 SBT toán 7 tập 2

    Giải bài 50 trang 46 sách bài tập toán 7. Cho tam giác ABC có góc A = 70°, các đường phân giác BD, CE cắt nhau ở I. Tính góc BIC.

  • Bài 49 trang 46 SBT toán 7 tập 2

    Bài 49 trang 46 sách bài tập toán 7. Cho tam giác ABC cân tại A, D là trung điểm của BC. Gọi E và F là chân các đường vuông góc kẻ từ D đến AB và AC. Chứng minh rằng DE = DF.

  • Bài 48 trang 46 SBT toán 7 tập 2

    Giải bài 48 trang 46 SBT toán 7. Cho tam giác ABC cân tại A. Các đường phân giác BD, CE cắt nhau ở K. Chứng minh rằng AK đi qua trung điểm của BC.

  • Bài 47 trang 46 SBT toán 7 tập 2

    Giải bài 47 trang 46 sách bài tập toán 7. Tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác. Chứng minh rằng tam giác đó là tam giác cân.

  • Bài 46 trang 46 SBT toán 7 tập 2

    Giải bài 46 trang 46 sách bài tập toán 7. Cho tam giác ABC. Hãy tìm một điểm sao cho khoảng cách từ điểm đó đến mỗi đoạn thẳng AB, BC, CA là bằng nhau, đồng thời khoảng cách này là ngắn nhất.

  • Bài 45 trang 46 SBT toán 7 tập 2

    Giải bài 45 trang 46 sách bài tập toán 7. Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác, gọi I là giao điểm các đường phân giác của tam giác. Chứng minh rằng ba điểm A, G, I thẳng hàng.

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.