Bài 52 trang 109 SBT toán 9 tập 2


Giải bài 52 trang 109 sách bài tập toán 9.Cho hai đường tròn có bán kính lần lượt là R = 1km và r = 1m. Nếu độ dài của mỗi đường tròn ấy đều tăng thêm 1m thì bán kính của mỗi đường tròn tăng thêm bao nhiêu? Hãy giải thích.

Đề bài

Cho hai đường tròn có bán kính lần lượt là \(R = 1km\) và \(r = 1m.\) Nếu độ dài của mỗi đường tròn ấy đều tăng thêm \(1m\) thì bán kính của mỗi đường tròn tăng thêm bao nhiêu? Hãy giải thích.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức: Độ dài \(C\) của một đường tròn bán kính \(R\) được tính theo công thức: \(C=2\pi R\)

Lời giải chi tiết

Gọi phần bán kính tăng thêm của đường tròn bán kính \(R\) là \(a,\) phần bán kính tăng thêm của đường tròn bán kính \(r\) là \(b.\) Khi bán kính mỗi đường tròn tăng thêm \(1m,\) ta có:

\(2\pi (R + a) = 2\pi R + 1 \Rightarrow 2\pi a = 1\)\( \Rightarrow a = \displaystyle{1 \over {2\pi }}(m)\)

\(2\pi (r + b) = 2\pi r + 1 \Rightarrow 2\pi b = 1\)\( \Rightarrow b = \displaystyle{1 \over {2\pi }}(m)\)

Vậy bán kính mỗi đường tròn đều tăng thêm \(\displaystyle {1 \over {2\pi }}(m)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài