Bài 4.61 trang 122 SBT đại số 10


Giải bài 4.61 trang 122 sách bài tập đại số 10. Giải các bất phương trình, hệ bất phương trình (ẩn m) sau...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình, hệ bất phương trình (ẩn m) sau

LG a

\(\left\{ \begin{array}{l}2m - 1 > 0\\{m^2} - (m - 2)(2m - 1) < 0\end{array} \right.;\)

Phương pháp giải:

Giải từng bất phương trình trong hệ, kết luận nghiệm.

Lời giải chi tiết:

\(\left\{ \begin{array}{l}2m - 1 > 0\\{m^2} - (m - 2)(2m - 1) < 0\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}2m > 1\\{m^2} - \left( {2{m^2} - 5m + 2} \right) < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > \dfrac{1}{2}\\ - {m^2} + 5m - 2 < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m > \dfrac{1}{2}\\\left[ \begin{array}{l}m > \dfrac{{5 + \sqrt {17} }}{2}\\m < \dfrac{{5 - \sqrt {17} }}{2}\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > \dfrac{1}{2}\\m > \dfrac{{5 + \sqrt {17} }}{2}\end{array} \right.\\\left\{ \begin{array}{l}m > \dfrac{1}{2}\\m < \dfrac{{5 - \sqrt {17} }}{2}\end{array} \right.\end{array} \right.\)  \( \Leftrightarrow m > \dfrac{{5 + \sqrt {17} }}{2}\)

LG b

\(\left\{ \begin{array}{l}{m^2} - m - 2 > 0\\{(2m - 1)^2} - 4({m^2} - m - 2) \le 0\end{array} \right.\)

Lời giải chi tiết:

 \(\left\{ \begin{array}{l}{m^2} - m - 2 > 0\\{(2m - 1)^2} - 4({m^2} - m - 2) \le 0\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 2\\4{m^2} - 4m + 1 - 4{m^2} + 4m + 8 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 2\\9 \le 0\left( {vo\,li} \right)\end{array} \right.\)

Vậy hệ vô nghiệm.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!