Bài 4 trang 5 SBT toán 8 tập 1


Giải bài 4 trang 5 sách bài tập toán 8. Chứng tỏ rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến: a) x(5x-3)-x^2(x-1)+x(x^2-6x)-10+3x; b) x(x^2+x+1)-x^2(x+1)-x+5.

Lựa chọn câu để xem lời giải nhanh hơn

Chứng tỏ rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến:

LG a

\(\) \( x( 5x - 3) - x^2( x - 1 )\)\( + x( x^2 - 6x ) \)\(- 10 + 3x\)

Phương pháp giải:

Sử dụng qui tắc:  Muốn nhân đơn thức với đa thức ta nhân đơn thức với từng hạng tử của đa thức rồi công chúng lại với nhau:\(A(B+C)=AB+AC\)

Lời giải chi tiết:

\(\)\(x\left( {5x - 3} \right) - {x^2}\left( {x - 1} \right) + x\left( {{x^2} - 6x} \right)\)\( - 10 + 3x\)

\( = x.5x - x.3 - {x^2}.x - {x^2}.\left( { - 1} \right) \)\(+ x.{x^2} + x.\left( { - 6x} \right) - 10 + 3x\)

\( = 5{x^2} - 3x - {x^3} + {x^2} + {x^3} - 6{x^2}\)\( - 10 + 3x\)

\( = (5{x^2} + {x^2}- 6{x^2})+(- 3x+ 3x) \)\(+(- {x^3}  + {x^3})  - 10 \)

\(=  - 10\)

Vậy biểu thức không phụ thuộc vào \(x.\)

LG b

\(\) \(x\left( {{x^2} + x + 1} \right) - {x^2}\left( {x + 1} \right) - x + 5\) 

Phương pháp giải:

Sử dụng qui tắc:  Muốn nhân đơn thức với đa thức ta nhân đơn thức với từng hạng tử của đa thức rồi công chúng lại với nhau:\(A(B+C)=AB+AC\)

Lời giải chi tiết:

\(\) \(x\left( {{x^2} + x + 1} \right) - {x^2}\left( {x + 1} \right) - x + 5\)

\( = x.{x^2} + x.x + x.1 - {x^2}.x - x.1 - x + 5\)

\( = {x^3} + {x^2} + x - {x^3} - {x^2} - x + 5\)

\(= ({x^3} - {x^3})+ ({x^2} - {x^2})+ (x   - x) + 5\)\(= 5\)

 Vậy biểu thức không phụ thuộc vào \(x.\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.7 trên 24 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài