Bài 3.3 phần bài tập bổ sung trang 53 SBT toán 9 tập 2


Giải bài 3.3 phần bài tập bổ sung trang 52 sách bài tập toán 9. Tìm b, c để phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm \(b, c\) để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là những số dưới đây:

LG a

\({x_1} =  - 1\) và \({x_2} = 2\)

Phương pháp giải:

+) Nếu \(x_1;x_2\) là hai nghiệm của phương trình bậc hai \({x^2} + bx + c = 0\) thì ta có \((x-x_1)(x-x_2)=0\)

Lời giải chi tiết:

Hai số \(-1\) và \(2\) là nghiệm của phương trình:

\( \left( {x + 1} \right)\left( {x - 2} \right) = 0 \)
\( \Leftrightarrow {x^2} - 2x + x - 2 = 0 \) 
\( \Leftrightarrow {x^2} - x - 2 = 0  \)

Hệ số: \(b = -1; c = -2.\)

LG b

\(x_1=-5\) và \(x_2=0\)

Phương pháp giải:

+) Nếu \(x_1;x_2\) là hai nghiệm của phương trình bậc hai \({x^2} + bx + c = 0\) thì ta có \((x-x_1)(x-x_2)=0\)

Lời giải chi tiết:

Hai số \(- 5\) và \(0\) là nghiệm của phương trình:

\( \left( {x + 5} \right)\left( {x - 0} \right) = 0 \) 
\( \Leftrightarrow x\left( {x + 5} \right) = 0 \)
\( \Leftrightarrow {x^2} + 5x = 0 \)

Hệ số: \(b = 5; c = 0\)

LG c

\({x_1} = 1 + \sqrt 2 \) và \({x_2} = 1 - \sqrt 2 \)

Phương pháp giải:

+) Nếu \(x_1;x_2\) là hai nghiệm của phương trình bậc hai \({x^2} + bx + c = 0\) thì ta có \((x-x_1)(x-x_2)=0\)

Lời giải chi tiết:

Hai số \(1 + \sqrt 2 \) và \(1 - \sqrt 2 \) là nghiệm của phương trình:

\( \left[ {x - \left( {1 + \sqrt 2 } \right)} \right]\left[ {x - \left( {1 - \sqrt 2 } \right)} \right] = 0 \) 
\( \Leftrightarrow {x^2} - \left( {1 - \sqrt 2 } \right)x - \left( {1 + \sqrt 2 } \right)x \)\(+ \left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) = 0 \) 
\( \Leftrightarrow {x^2} - 2x - 1 = 0  \)

Hệ số: \(b = -2; c = -1\)

LG d

\(x_1=3\) và \({x_2} = \displaystyle - {1 \over 2}\)

Phương pháp giải:

+) Nếu \(x_1;x_2\) là hai nghiệm của phương trình bậc hai \({x^2} + bx + c = 0\) thì ta có \((x-x_1)(x-x_2)=0\)

Lời giải chi tiết:

Hai số \(3\) và \( - \displaystyle {1 \over 2}\) là nghiệm của phương trình:

\( \left( {x - 3} \right)\left( {x + \displaystyle {1 \over 2}} \right) = 0 \) 
\( \Leftrightarrow \displaystyle {x^2} + {1 \over 2}x - 3x - {3 \over 2} = 0 \) 
\( \Leftrightarrow \displaystyle {x^2} - \dfrac{5}{2}x - \dfrac{3}{2} = 0 \)

Hệ số: \(b = -\dfrac{5}{2}; c = -\dfrac{3}{2}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài