
Đề bài
Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \({V_1},{V_2},{V_3}\) theo thứ tự là thể tích của những hình sinh ra khi quay tam giác \(ABC\) một vòng xung quanh các cạnh \(BC, AB\) và \(AC.\) Chứng minh rằng:
\(\displaystyle {1 \over {V_1^2}} = {1 \over {V_2^2}} + {1 \over {V_3^2}}.\)
Phương pháp giải - Xem chi tiết
Sử dụng:
- Thể tích hình nón: \(\displaystyle V = {1 \over 3}\pi {r^2}h\).
(\(r\) là bán kính đường tròn đáy, \(h\) là chiều cao).
- Định lí Pytago trong tam giác vuông: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.
Lời giải chi tiết
\(∆ABC\) có \(\widehat A = 90^\circ \), đặt \(AB = c, AC = b, BC = a, AH = h\); \(AH\) là đường cao kẻ từ đỉnh \(A\) đến cạnh huyền \(BC\).
Ta có: \(\displaystyle h = {{bc} \over a}\) (hệ thức lượng trong tam giác vuông)
- Khi quay tam giác vuông \(ABC\) quanh cạnh huyền \(BC\) một vòng thì cạnh \(AB\) và \(AC\) vạch nên hai hình nón có chung đáy có bán kính đáy bằng đường cao \(AH\) và tổng chiều cao \(2\) hình nón bằng cạnh huyền \(BC.\) Như vậy, thể tích hình sinh ra là:
\(\displaystyle {V_1} = {1 \over 3}\pi .A{H^2}. HB + {1 \over 3}\pi .A{H^2}.HC\)
\( \displaystyle = {1 \over 3}A{H^2}.(HB+HC) \)
\( \displaystyle = {1 \over 3}A{H^2}.BC \)
\(\displaystyle = {1 \over 3}\pi {\left( {{{bc} \over a}} \right)^2}.a = {{\pi {b^2}{c^2}} \over {3a}}\)
\( \Rightarrow \dfrac{1}{{V_1^2}} = \dfrac{1}{{{{\left( {\dfrac{{\pi {b^2}{c^2}}}{{3a}}} \right)}^2}}} = \dfrac{{9{a^2}}}{{{\pi ^2}{b^4}{c^4}}}\) (1)
- Khi quay \(∆ABC\) quanh cạnh \(AB\) một vòng ta thu được hình nón có chiều cao \(AB = c\), bán kính đáy \(AC = b\) và thể tích hình sinh ra là:
\(\displaystyle {V_2} = {1 \over 3}\pi .A{C^2}.AB = {1 \over 3}\pi {b^2}c\)
\(\displaystyle \Rightarrow {1 \over {V_2^2}} = {1 \over {\left( \displaystyle {{{\pi {b^2}c} \over 3}} \right)^2}} = {9 \over {{\pi ^2}{b^4}{c^2}}}\)
- Khi quay \(∆ABC\) quanh cạnh \(AC\) một vòng ta thu được hình nón có chiều cao \(AC = b\), bán kính đáy \(AB = c\) và thể tích hình sinh ra là:
\(\displaystyle {V_3} = {1 \over 3}{\rm{A}}{{\rm{B}}^2}.AC = {1 \over 3}\pi {c^2}b\)
\(\displaystyle \Rightarrow {1 \over {V_3^2}} = {1 \over {\left(\displaystyle {{{\pi b{c^2}} \over 3}} \right)^2}} = {9 \over {{\pi ^2}{b^2}{c^4}}}\)
Ta có:
\(\displaystyle {1 \over {V_2^2}} + {1 \over {V_3^2}} = {9 \over {{\pi ^2}{b^4}{c^2}}} + {9 \over {{\pi ^2}{b^2}{c^4}}} \)\(\,\displaystyle = {{9({b^2} + {c^2})} \over {{\pi ^2}{b^4}{c^4}}}\)
Áp dụng định lí Pytago vào \(∆ABC\) vuông tại \(A\), ta có:
\({b^2} + {c^2} = {a^2} \)
\(\displaystyle \Rightarrow {1 \over {V_2^2}} + {1 \over {V_3^2}} = {{9({b^2} + {c^2})} \over {{\pi ^2}{b^4}{c^4}}}\)\(\,\displaystyle= {{9{a^2}} \over {{\pi ^2}{b^4}{c^4}}}\) (2)
Từ (1) và (2) suy ra: \(\displaystyle {1 \over {V_1^2}} = {1 \over {V_2^2}} + {1 \over {V_3^2}}\).
Loigiaihay.com
Giải bài 26 trang 169 sách bài tập toán 9. Hình 101 có một hình nón, chiều cao k (cm), bán kính đường tròn đáy m (cm) và một hình trụ có cùng chiều cao và bán kính đường tròn đáy với hình nón...
Giải bài 24 trang 169 sách bài tập toán 9. Một hình trụ có bán kính đáy 1cm và chiều cao 2cm, người ta khoan đi một phần có dạng hình nón như hình vẽ (h.100) thì phần thể tích còn lại của nó sẽ là ...
Giải bài 23 trang 168 sách bài tập toán 9. Hình 99 là một hình nón. Chiều cao là h (cm), bán kính đường tròn đáy là r (cm) và độ dài đường sinh m (cm) thì thể tích hình nón này là ...
Giải bài 22 trang 168 sách bài tập toán 9. Từ một hình nón, người thợ tiện có thể tiện ra một hình trụ cao nhưng “ hẹp” hoặc một hình trụ rộng nhưng “ thấp”. Trong trường hợp nào thì người thợ tiện loại bỏ ít vật liệu hơn?
Giải bài 21 trang 168 sách bài tập toán 9. Nếu chiều cao và bán kính đáy của một hình nón đều tăng lên và bằng 5/4 so với các kích thước tương ứng ban đầu thì trong các tỉ số sau đây ...
Giải bài 20 trang 168 sách bài tập toán 9. Hình 98 có một hình nón, bán kính đường tròn đáy là m/2 (cm), chiều cao là 2l (cm) và một hình trụ, bán kính đường tròn đáy m (cm), chiều cao 2l (cm).
Giải bài 19 trang 167 sách bài tập toán 9. Cho hình bình hành ABCD với AB = 1, AD = x (x > 0) và góc BAD = 60^o ...
Giải bài 18 trang 167 sách bài tập toán 9. Diện tích toàn phần của hình nón, theo các kích thước của hình 97 là ...
Giải bài 17 trang 167 sách bài tập toán 9. Người ta minh họa một cái xô đựng nước ở hình 96. Thể tích nước chứa đầy xô sẽ là (tính theo cm^3) ...
Giải bài 16 trang 167 sách bài tập toán 9. Một chiếc cốc dạng hình nón, chứa đầy rượu (h.95). Cụ Bá uống một lượng rượu nên “chiều cao” của rượu còn lại trong cốc bằng một nửa chiều cao ban đầu.
Giải bài 15 trang 166 sách bài tập toán 9. Cắt bỏ hình quạt OPSQ (xem hình 94 – phần gạch sọc). Biết độ dài cung PRQ là x thì phần còn lại có thể ghép thành hình nón nào dưới đây?
Giải bài 14 trang 166 sách bài tập toán 9. Cho tam giác ABC vuông tại A, góc B = 60^o và BC = 2a.(đơn vị độ dài). Quay tam giác đó một vòng quanh cạnh huyền BC...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: