Bài 2.2 phần bài tập bổ sung trang 26 SBT toán 8 tập 1


Giải bài 2.2 phần bài tập bổ sung trang 26 sách bài tập toán 8. Biến đổi mỗi phân thức sau thành phân thức có mẫu thức ...

Đề bài

Biến đổi mỗi phân thức sau thành phân thức có mẫu thức  \({x^2} - 9\)

\(\displaystyle {{3x} \over {x + 3}}\); \(\displaystyle {{x - 1} \over {x - 3}}\) ; \({x^2} + 9\)

Phương pháp giải - Xem chi tiết

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Lời giải chi tiết

Ta có \({x^2} - 9 = \left( {x + 3} \right)\left( {x - 3} \right)\)

\(\displaystyle {{3x} \over {x + 3}} = {{3x\left( {x - 3} \right)} \over {\left( {x + 3} \right)\left( {x - 3} \right)}} \)\(\,\displaystyle= {{3{x^2} - 9x} \over {{x^2} - 9}}\)

\(\displaystyle{{x - 1} \over {x - 3}} = {{\left( {x - 1} \right)\left( {x + 3} \right)} \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)\(\,\displaystyle  = {{{x^2} + 2x - 3} \over {{x^2} - 9}}  \)

\(\displaystyle {x^2} + 9 = {{\left( {{x^2} + 9} \right)\left( {{x^2} - 9} \right)} \over {{x^2} - 9}} \)\(\,\displaystyle = {{{x^4} - 81} \over {{x^2} - 9}} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.5 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài