Câu hỏi 7 trang 89 SGK Hình học 11

Bình chọn:
4.9 trên 7 phiếu

Giải câu hỏi 7 trang 89 SGK Hình học 11. Chứng minh rằng ...

Đề bài

Cho ba vecto \(\overrightarrow a ;\,\overrightarrow b ;\,\overrightarrow c \)  trong không gian. Chứng minh rằng nếu \(m\overrightarrow a  + n\overrightarrow b  + p\overrightarrow c  = \overrightarrow 0 \) và một trong ba số m, n, p khác không thì ba vecto \(\overrightarrow a ;\,\overrightarrow b ;\,\overrightarrow c \)  đồng phẳng.

Phương pháp giải - Xem chi tiết

Rút một véc tơ theo hai véc tơ còn lại và sử dụng nội dung định lý 1 để nhận xét.

Lời giải chi tiết

Giả sử p ≠ 0 ta có:

\(\eqalign{
& m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \cr
& \Rightarrow m\overrightarrow a + n\overrightarrow b = - p\overrightarrow c \cr
& \overrightarrow c = {{ - m} \over p}\overrightarrow a + {{ - n} \over p}\overrightarrow b \cr} \)

Do đó, ba vecto \(\overrightarrow a ;\,\overrightarrow b ;\,\overrightarrow c \)  đồng phẳng theo định lí 1.

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Vectơ trong không gian

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng