Bài 10 trang 92 SGK Hình học 11


Đề bài

Cho hình hộp \(ABCD.EFGH\). Gọi \(K\) là giao điểm của \(AH\) và \(DE\), \(I\) là giao điểm của \(BH\) và \(DF\). Chứng minh ba véctơ \(\overrightarrow{AC}\), \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) đồng phẳng.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh giá của các véctơ \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) song song với mặt phẳng \((ABCD)\) chứa véctơ \(\overrightarrow{AC}\). Từ đó suy ra ba véctơ đồng phẳng.

Lời giải chi tiết

\(I=BH\cap DF\) là giao điểm của hai đường chéo hình bình hành \(BDHF\) do đó \(I\) là trung điểm của \(BH\).

\(K\) là giao điểm của hai đường chéo hình bình hành \(ADHE\) do đó \(K\) là trung điểm của \(AH\).

\(\Rightarrow KI\) là đường trung bình của tam giác \(ABH\).

\(\Rightarrow KI//AB \Rightarrow KI//(ABCD)\)      (1)

Ta có: \(BCGF\) là hình bình hành

\(\Rightarrow FG//BC \Rightarrow FG//(ABCD)\)     (2)

Từ (1) và (2) suy ra: các véctơ \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) song song với mặt phẳng \((ABCD)\) chứa véctơ \(\overrightarrow{AC}\)

Vậy \(\overrightarrow{AC}\), \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) đồng phẳng.

 Loigiaihay.com


Bình chọn:
4.1 trên 18 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.