Bài 4 trang 92 SGK Hình học 11

Bình chọn:
4.2 trên 13 phiếu

Giải bài 4 trang 92 SGK Hình học 11. Cho hình tứ diện ABCD...

Đề bài

Cho hình tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(CD\). Chứng minh rằng: 

a) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right );\)

b) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc ba điểm.

Lời giải chi tiết

a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{DN}.\)

    \(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}.\) 

Cộng từng vế ta được: \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right )\)

b) 

\(\eqalign{
& \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} \cr
& \overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DN} \cr} \)

Cộng từng vế ta được: \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Vectơ trong không gian

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu