Bài 7 trang 92 SGK Hình học 11

Bình chọn:
4.4 trên 20 phiếu

Giải bài 7 trang 92 SGK Hình học 11. Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD.

Đề bài

Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AC\) và \(BD\) của tứ diện \(ABCD\). Gọi \(I\) là trung điểm của đoạn thẳng \(MN\) và \(P\) là một điểm bất kì trong không gian. Chứng minh rằng: 

a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0};\)

b) \(\overrightarrow{PI}=\frac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \) với \(M\) là điểm nằm ngoài đoạn thẳng \(AB\) và \(I\) là trung điểm của \(AB\).

b) Sử dụng quy tắc ba điểm.

Lời giải chi tiết

a) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IM},\) (Vì M là trung điểm của AB)

    \(\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{IN}.\) (Vì N là trung điểm của CD)

Cộng từng vế ta được :

\(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = 2\left( {\overrightarrow {IM}  + \overrightarrow {IN} } \right) = \overrightarrow 0 \)

b) 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan