Bài 8 trang 107 SGK Đại số và Giải tích 11

Bình chọn:
3.3 trên 15 phiếu

Giải bài 8 trang 107 SGK Đại số và Giải tích 11. Tìm số hạng đầu u1 và công sai d của các cấp số cộng (un) biết:

Đề bài

Tìm số hạng đầu \(u_1\) và công sai \(d\) của các cấp số cộng (un) biết:

a) \(\left\{ \matrix{5{u_1} + 10u_5 = 0 \hfill \cr {S_4} = 14 \hfill \cr} \right.\)

b) \(\left\{ \matrix{{u_7} + {u_{15}} = 60 \hfill \cr u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)

Phương pháp giải - Xem chi tiết

Sử dụng các công thức 

\[\begin{array}{l}
{u_n} = {u_1} + \left( {n - 1} \right)d\\
{S_n} = \frac{{\left( {2{u_1} + \left( {n - 1} \right)d} \right)n}}{2}
\end{array}\]

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}
\,\,\,\,\,\,\left\{ \begin{array}{l}
5{u_1} + 10{u_5} = 0\\
{S_4} = 14
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
5{u_1} + 10\left( {{u_1} + 4d} \right) = 0\\
\frac{{\left( {2{u_1} + 3d} \right).4}}{2} = 14
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
15{u_1} + 40d = 0\\
2{u_1} + 3d = 7
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_1} = 8\\
d = - 3
\end{array} \right.
\end{array}\)

Vậy số hạng đầu \(u_1= 8\), công sai \(d = -3\)

b) Ta có:

\(\left\{ \matrix{
{u_7} + {u_{15}} = 60 \hfill \cr
u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
({u_1} + 6d) + ({u_1} + 14d) = 60\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr
{({u_1} + 3d)^2} + {({u_1} + 11d)^2} = 1170\,\,\,\,(2) \hfill \cr} \right.\)

\((1) ⇔ 2u_1+ 20d = 60 ⇔ u_1= 30 – 10d\) thế vào \((2)\)

\((2) ⇔[(30 – 10d) + 3d]^2+ [(30 – 10d) + 11d]^2= 1170\)

\(⇔ (30 – 7d)^2+ (30 + d)^2= 1170\)

\(⇔900 – 420d + 49d^2+ 900 + 60d + d^2= 1170\)

\(⇔ 50d^2– 360d + 630 = 0\) 

\( \Leftrightarrow \left[ \matrix{
d = 3 \Rightarrow {u_1} = 0 \hfill \cr
d = {{21} \over 5} \Rightarrow {u_1} = - 12 \hfill \cr} \right.\)

Vậy \(\left\{ \matrix{{u_1} = 0 \hfill \cr d = 3 \hfill \cr} \right.\) hoặc \(\left\{ \matrix{{u_1} = - 12 \hfill \cr d = {{21} \over 5} \hfill \cr} \right.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Bài 9 trang 107 SGK Đại số và Giải tích 11 Bài 9 trang 107 SGK Đại số và Giải tích 11

Giải bài 9 trang 107 SGK Đại số và Giải tích 11. Tìm số hạng đầu u1 và công bội của các cấp số nhân (un), biết:

Xem chi tiết
Bài 10 trang 108 SGK Đại số và Giải tích 11 Bài 10 trang 108 SGK Đại số và Giải tích 11

Giải bài 10 trang 108 SGK Đại số và Giải tích 11. Tứ giác ABCD có số đo (độ) của các góc lập thành một cấp số cộng theo thứ tự A, B, C, D. Biết rằng góc C gấp 4 lần góc A. Tính các góc của tứ giác.

Xem chi tiết
Bài 11 trang 108 SGK Đại số và Giải tích 11 Bài 11 trang 108 SGK Đại số và Giải tích 11

Giải bài 11 trang 108 SGK Đại số và Giải tích 11. Biết rằng ba số x, y, z lập thành một cấp số nhân và ba số x, 2y, 3z lập thành một cấp số cộng. Tìm công bội của cấp số nhân.

Xem chi tiết
Bài 12 trang 108 SGK Đại số và Giải tích 11 Bài 12 trang 108 SGK Đại số và Giải tích 11

Giải bài 12 trang 108 SGK Đại số và Giải tích 11. Người ta thiết kế một tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới ...

Xem chi tiết
Lý thuyết cấp số nhân Lý thuyết cấp số nhân

1. Định nghĩa un là cấp số nhân un+1 = un.q, với n ε N*

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết đường thẳng vuông góc với mặt phẳng Lý thuyết đường thẳng vuông góc với mặt phẳng

Định nghĩa: một đường thẳng gọi là vuông góc với mặt phẳng nếu...

Xem chi tiết
Lý thuyết định nghĩa tính chất của hai mặt phẳng song song Lý thuyết định nghĩa tính chất của hai mặt phẳng song song

Hai mặt phẳng gọi là song song với nhau nếu chúng không có điểm chung

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu