Bài 13 trang 108 SGK Đại số và Giải tích 11

Bình chọn:
3.2 trên 6 phiếu

Giải bài 13 trang 108 SGK Đại số và Giải tích 11. Chứng minh rằng:

Đề bài

Chứng minh rằng nếu các số \({a^2},{b^2},{c^2}\) lập thành một cấp số cộng \((abc ≠ 0)\) thì các số \(\displaystyle{1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) cũng lập thành một cấp số cộng.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của CSC: Nếu ba số x, y, z là ba số liên tiếp của CSC thì: \(x + z = 2y\).

Lời giải chi tiết

Ta phải chứng minh: \(\displaystyle{1 \over {b + c}} + {1 \over {a + b}} = {2 \over {c + a}}\) (1)

Biến đổi:

\(\eqalign{
& (1) \Leftrightarrow {1 \over {b + c}} - {1 \over {c + a}} = {1 \over {c + a}} - {1 \over {a + b}} \cr
& \Leftrightarrow {{c + a - b - c} \over {(c + a)(b + c)}} = {{a + b - c - a} \over {(c + a)(a + b)}} \cr
& \Leftrightarrow {{a - b} \over {b + c}} = {{b - c} \over {a + b}}\Leftrightarrow {a^2} - {b^2} = {b^2} - {c^2}\cr} \)

Vậy (1) đúng vì \(a^2,b^2,c^2\) lập thành cấp số cộng.

Vậy \(\displaystyle{1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) là cấp số cộng.

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng