

Bài 9 trang 92 SGK Hình học 11>
Cho tam giác ABC. Lấy điểm S nằm ngoài mặt phẳng (ABC)...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho tam giác \(ABC\). Lấy điểm \(S\) nằm ngoài mặt phẳng \((ABC)\). Trên đoạn \(SA\) lấy điểm \(M\) sao cho \(\overrightarrow{MS}\) = \(-2\overrightarrow{MA}\) và trên đoạn \(BC\) lấy điểm \(N\) sao cho \(\overrightarrow{NB}=-\dfrac{1}{2}\overrightarrow{NC}.\) Chứng minh rằng ba véctơ \(\overrightarrow{AB}\), \(\overrightarrow{MN}\), \(\overrightarrow{SC}\) đồng phẳng.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng kết quả của định lí 1 về điều kiện để ba vector đồng phẳng.
Trong không gian cho hai vector \(\overrightarrow a ;\,\,\overrightarrow b \) không cùng phương và vector \(\overrightarrow c \). Khi đó ba vector \(\overrightarrow a ;\,\,\overrightarrow b ;\,\,\overrightarrow c \) đồng phẳng khi và chỉ khi tồn tại cặp số \(m;n\) sao cho \(\overrightarrow c = m\overrightarrow a + n\overrightarrow b \). Ngoài ra cặp số \(m;n\) là duy nhất.
Lời giải chi tiết
Biểu diễn \(\overrightarrow {MN} \) qua hai véc tơ \(\overrightarrow {AB} ,\overrightarrow {SC} \):
Ta có:
\( \overrightarrow {MN} = \overrightarrow {MS} + \overrightarrow {SC} + \overrightarrow {CN} \)\(= {2 \over 3}\overrightarrow {AS} + \overrightarrow {SC} + {2 \over 3}\overrightarrow {CB} \,\,\,\,\,\,\,\,\,\left( 1 \right) \)
\(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN}\)\( = - {1 \over 3}\overrightarrow {AS} + \overrightarrow {AB} - {1 \over 3}\overrightarrow {CB} \,\,\,\left( 2 \right) \)
Nhân (2) với \(2\) rồi cộng với (1) ta được:
\(3\overrightarrow{MN}\) = \(\overrightarrow{SC}\) + \(2\overrightarrow{AB}\) \(\Leftrightarrow\overrightarrow{MN}= \frac{1}{3}\overrightarrow{SC}+\frac{2}{3}\overrightarrow{AB}.\)
Vậy \(\overrightarrow{AB}\), \(\overrightarrow{MN}\), \(\overrightarrow{SC}\) đồng phẳng.
Loigiaihay.com


- Bài 10 trang 92 SGK Hình học 11
- Bài 8 trang 92 SGK Hình học 11
- Bài 7 trang 92 SGK Hình học 11
- Bài 6 trang 92 SGK Hình học 11
- Bài 5 trang 92 SGK Hình học 11
>> Xem thêm