Bài 9 trang 80 SGK Hình học 11

Bình chọn:
3.3 trên 3 phiếu

Giải bài 9 trang 80 SGK Hình học 11. Cho hình bình hành ABCD. Gọi Bx, Cy, Dz là các nửa đường thẳng song song với nhau lần lượt đi qua B, C, D và nằm về một phía của mặt phẳng (ABCD)...

Đề bài

Cho hình bình hành \(ABCD\). Gọi \(Bx, Cy, Dz\) là các nửa đường thẳng song song với nhau lần lượt đi qua \(B, C, D\) và nằm về một phía của mặt phẳng \((ABCD)\) đồng thời không nằm trong mặt phẳng \((ABCD)\). Một mặt phẳng đi qua \(A\) và cắt \(Bx, Cy, Dz\) lần lượt tại \(B', C', D'\) với \(BB'=2, DD'=4\). Khi đó \(CC'\) bằng:

(A) 3               (B) 4                (C) 5                (D) 6

Phương pháp giải - Xem chi tiết

Sử dụng kết quả của định lí: Cho hai mặt phẳng song song, nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau để chứng minh \(AB'C'D'\) là hình bình hành.

Gọi \(O,O'\) lần lượt là tâm của hình bình hành \(ABCD ,AB'C'D'\), dựa vào tính chất đường trung bình của hình thang và đường trung bình của tam giác để tính độ dài \(CC'\).

Lời giải chi tiết

Ta có: 

\(\begin{array}{l}\left\{ \begin{array}{l}BC//AD\\Bx//Dz\end{array} \right. \Rightarrow \left( {Bx;Cy} \right)//\left( {AD;Dz} \right)\\\left\{ \begin{array}{l}\left( {A'B'C'D'} \right) \cap \left( {Bx;Cy} \right) = B'C'\\\left( {A'B'C'D'} \right) \cap \left( {AD;Dz} \right) = AD'\\\left( {Bx;Cy} \right)//\left( {AD;Dz} \right)\end{array} \right. \Rightarrow AD'//B'C'\end{array}\).

Chứng minh tương tự ta có \(AB'//C'D'\). Do đó \(AB'C'D'\) là hình bình hành.

Gọi \(O,O'\) lần lượt là tâm của hình bình hành \(ABCD ,AB'C'D'\) ta có \(OO'\) là đường trung bình của hình thang \(BDD'B'\) nên \(BB'+DD'=2OO'\)    (1).

\(OO'\) là đường trung bình của tam giác \(ACC'\) nên \(CC'=2OO'\)     (2).

Từ (1) và (2) suy ra \(BB'+DD'=CC' \Rightarrow CC'=2+4=6\)

Chọn đáp án D.

logiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương II - Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu