
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M, N, P\) theo thứ tự là trung điểm của các đoạn thẳng \(SA, BC, CD\). Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng \((MNP)\).
Gọi \(O\) là giao điểm hai đường chéo của hình bình hành \(ABCD\), hãy tìm giao điểm của đường thẳng \(SO\) với \(mp (MNP)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Xác định giao tuyến của mặt phẳng \((MNP)\) với các mặt của hình chóp.
b) Tìm điểm chung của đường thẳng \(SO\) với \(mp (MNP)\).
Lời giải chi tiết
a) Trong mặt phẳng \((ABCD)\) kéo dài \(NP\) cắt đường thẳng \(AB, AD\) lần lượt tại \(E, F\).
Trong mặt phẳng \((SAD)\) gọi \(Q=SD\cap MF\)
Trong mặt phẳng \((SAB)\) gọi \(R=SB\cap ME\)
Do đó
\( \Rightarrow \left\{ \begin{array}{l}
\left( {MNP} \right) \cap \left( {SAD} \right) = MQ\\
\left( {MNP} \right) \cap \left( {SDC} \right) = QP\\
\left( {MNP} \right) \cap \left( {ABCD} \right) = PN\\
\left( {MNP} \right) \cap \left( {SBC} \right) = NR\\
\left( {MNP} \right) \cap \left( {SAB} \right) = RM
\end{array} \right.\)
Từ đó ta có thiết diện là ngũ giác \(MQPNR\).
b) Trong \((ABCD)\) gọi \(H=AC\cap NP\)
\( \Rightarrow H \in AC \subset \left( {SAC} \right)\)\( \Rightarrow MH \subset \left( {SAC} \right)\)
Trong \(\left( {SAC} \right)\), gọi \(I = SO \cap MH \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in MH \subset \left( {MNP} \right)\end{array} \right.\)
\( \Rightarrow I = SO \cap \left( {MNP} \right)\).
Loigiaihay.com
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB, SC
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn nửa đường thẳng Ax, By, Cz, Dt ở cùng phía đối với mặt phẳng (ABCD)...
Tìm mệnh đề sai trong các mệnh đề sau đây:
Giải bài 2 trang 78 SGK Hình học 11. Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó
Giải bài 3 trang 78 SGK Hình học 11. Cho tứ diện ABCD. Gọi I, J và K lần lượt là trung điểm của AC, BC và BD (h.2.75).. Giao tuyến của hai mặt phẳng (ABD) và (IJK) là
Giải bài 4 trang 79 SGK Hình học 11. Tìm mệnh đề đúng trong các mệnh đề sau:
Giải bài 5 trang 79 SGK Hình học 11. Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC (h.2.76), E là điểm trên cạnh CD với ED = 3EC.
Cho hình lăng trụ tam giác ABC.A'B'C' , Gọi I, J lần lượt là trọng tâm của tam giác ABC và A'B'C' (h.2.77).
Giải bài 7 trang 79 SGK Hình học 11. Cho tứ diện SABC cạnh bằng a. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI.
Với giả thiết của bài tập 7, chu vi của thiết diện tính theo AM = x là:
Giải bài 9 trang 80 SGK Hình học 11. Cho hình bình hành ABCD. Gọi Bx, Cy, Dz là các nửa đường thẳng song song với nhau lần lượt đi qua B, C, D và nằm về một phía của mặt phẳng (ABCD)...
Giải bài 10 trang 80 SGK Hình học 11. Tìm mệnh đề đúng trong các mệnh đề sau:
Cho hình vuông ABCD và tam giác đều SAB nằm trong hai mặt phẳng khác nhau. Gọi M là điểm di động trên đoạn AB.
Với giả thiết của bài tập 11, gọi N, P, Q lần lượt là giao của mặt phẳng (alpha ) với các đường thẳng CD, DS, SA.
Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong một mặt phẳng.
Trả lời câu hỏi 7 trang 77 sách giáo khoa Hình học 11. Nêu cách xác định thiết diện được tạo bởi một mặt phẳng với một hình chóp, hình hộp, hình lăng trụ.
Phát biểu định lí Ta – lét trong không gian.
Nêu phương pháp chứng minh. Đường thẳng song song với đường thẳng...
Trả lời câu hỏi 4 trang 77 sách giáo khoa Hình học 11. Nêu phương pháp chứng minh ba đường thẳng đồng quy.
Trả lời câu hỏi 3 trang 77 sách giáo khoa Hình học 11. Nêu phương pháp chứng minh ba điểm thẳng hàng.
Trả lời câu hỏi 2 trang 77 sách giáo khoa Hình học 11. Thế nào là đường thẳng song song với đường thẳng, đường thẳng song song với mặt phẳng, mặt phẳng song song với mặt phẳng.
Hãy nêu các cách xác định mặt phẳng, kí hiệu mặt phẳng.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: