Bài 11 trang 80 SGK Hình học 11


Đề bài

Cho hình vuông \(ABCD\) và tam giác đều \(SAB\) nằm trong hai mặt phẳng khác nhau. Gọi \(M\) là điểm di động trên đoạn \(AB\). Qua \(M\) vẽ mặt phẳng \((\alpha)\) song song với \((SBC)\)

Thiết diện tạo bởi \((\alpha)\) và hình chóp \(S.ABCD\) là hình gì?

(A) Tam giác               (B) Hình bình hành

(C) Hình thang            (D) Hình vuông

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Xác định thiết diện, sử dụng tính chất: Nếu ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.

Lời giải chi tiết

Trong \((ABCD)\) qua \(M\) kẻ \(MN // BC\)

Trong \((SAB)\) qua \(M\) kẻ \(MQ // SB\)

Trong \((SCD)\) qua \(N\) kẻ \(NP // SC.\)

Từ đó ta có thiết diện của hình chóp khi cắt bởi mặt phẳng \((\alpha)\) là tứ giác \(MNPQ\).

Ta có \(\left\{ \begin{array}{l}\left( {MNPQ} \right) \cap \left( {SAD} \right) = PQ\\\left( {MNPQ} \right) \cap \left( {ABCD} \right) = MN\\\left( {ABCD} \right) \cap \left( {SAD} \right) = AD\end{array} \right.\) \( \Rightarrow PQ//MN//AD\)

Vậy \(MNPQ\) là hình thang.

Chọn đáp án C.

Loigiaihay.com


Bình chọn:
4.1 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2k7 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập mễn phí

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.